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Abstract: This paper presents a theoretical study of a Condition Monitoring Method (CMM) for
three-phase induction machines within the framework of Industry 4.0. The proposed approach
integrates electrical and mechanical indicators to enhance fault detection sensitivity and reliability
in digitally connected industrial systems. Unlike conventional Machine Current Signature Analysis
(MCSA), the CMM employs a model-based structure supported by adaptive learning, intelligent
alarm logic, and built-in redundancy. These features enable the system to interpret complex signal
patterns, distinguish transient disturbances from persistent faults, and avoid missed alarms caused
by learning an already degraded state. The innovation of this work lies in the formulation of a unified
theoretical framework that connects model-based residual analysis, adaptive statistical decision-
making, and digital system integration. The study contributes to knowledge by defining how these
elements can be architected within Industry 4.0 environments, enabling predictive maintenance
strategies that are data-driven, interoperable, and self-adaptive. Although no experimental validation
is presented, the conceptual framework establishes a foundation for the future development of
intelligent diagnostic systems that combine physical modelling with digital analytics. In summary,
this work provides a novel conceptual model that bridges traditional condition monitoring and
modern cyber-physical production systems, contributing to the theoretical advancement of intelligent,
Industry 4.0-compatible maintenance architectures.

Keywords: industry 4.0, condition monitoring, induction machines, model-based diagnosis, machine
current signature analysis, predictive maintenance, intelligent alarms

1. Introduction

The ongoing industrial transformation driven by Industry 4.0 has fundamentally
reshaped the way condition monitoring (CM) and predictive maintenance (PdM) are
conceived and implemented. Intelligent, connected, and adaptive systems now form the
backbone of modern industrial operations, integrating digital twins, data analytics, and
cyber-physical infrastructures to ensure reliability and operational efficiency. In line with
the Tech Forum Journal’s scope—promoting innovation in intelligent engineering, digital
systems, and industrial automation—this work contributes a novel theoretical foundation
for condition monitoring of induction machines that directly supports the advancement of
smart manufacturing systems.

This work advances the theoretical foundation of condition monitoring for induction
machines by integrating model-based residual analysis, adaptive learning, and intelligent
alarm systems. The proposed Condition Monitoring Method (CMM) framework introduces
built-in redundancy, a statistical persistence mechanism, and a reference machine database
that collectively enhance sensitivity and reliability. Unlike conventional Machine Current
Signature Analysis (MCSA) approaches, this method formalises a digital-ready architecture
consistent with Industry 4.0 principles, enabling real-time, interconnected, and self-adaptive
diagnostic systems. Although theoretical in nature, the study contributes a novel conceptual
model that defines how electrical and mechanical monitoring parameters can be combined
to support predictive maintenance and fault prevention in smart industrial environments.
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Condition monitoring of induction machines has evolved from classical signal-based
analysis to hybrid intelligent frameworks that integrate modelling, learning, and digital
connectivity. Early model-based diagnostic approaches [1,2], established the theoretical
basis for residual generation and analytical redundancy in fault detection. These studies
demonstrated how dynamic models could be used to estimate normal operating behaviour,
allowing deviations in system parameters to serve as indicators of faults. Although ini-
tially applied in aerospace systems, such principles are directly applicable to industrial
electromechanical equipment.

Traditional MCSA remains one of the most widely used non-intrusive diagnostic
techniques for rotating machinery. By analysing frequency components in the stator current
spectrum, MCSA can detect electrical and mechanical irregularities such as broken rotor
bars, eccentricity, or bearing faults. However, as Krause et al. [3] showed, purely spectral
techniques are limited by noise, variable load conditions, and power-supply disturbances,
which often result in misclassifications or undetected faults. According to Kumar [4],
these limitations underline the need for complementary approaches that fuse electrical and
mechanical observables to achieve more reliable diagnostic performance.

In response to these challenges, recent studies have explored hybrid approaches that
integrate multi-domain sensing and data-driven analysis. Chitariu [6] proposed a method
that combines electrical power monitoring with mechanical vibration indicators to detect
asymmetries and eccentricities in induction machines. Similarly, Chinis & Stavroulakis
[5] emphasised the importance of integrated, low-cost predictive maintenance solutions
for small and medium-sized enterprises seeking to adopt Industry 4.0 technologies. These
findings confirm that the next generation of CM systems must go beyond isolated signal
analysis and embrace data fusion and adaptive intelligence.

With the increasing maturity of digital manufacturing, PAM frameworks have be-
come heavily reliant on data analytics and machine learning. Hector and Panjanathan
[7] demonstrated that intelligent algorithms, when combined with expert knowledge and
physical models, significantly enhance fault-detection accuracy and generalisation under
non-stationary conditions. Mallioris et al. [8] expanded this view by mapping predic-
tive maintenance applications across industries, concluding that the most robust systems
combine physics-informed modelling with adaptive data-driven learning to achieve both
interpretability and scalability. The proposed CMM aligns with this trend by implementing
a hybrid model-learning architecture that continuously adapts to operating conditions
while maintaining a physically meaningful residual model.

The emergence of digital-twin (DT) technology has further transformed condition
monitoring. Liu et al. [9] described DT-driven CM as an evolutionary step in which a
virtual model of the machine mirrors the physical asset in real time, enabling residual-based
diagnostics, virtual testing, and predictive decision-making. Chen et al. [10] identified
sensor virtualisation, high-speed data streaming, and cloud-edge computing as the en-
abling technologies that make this integration feasible. Yin et al. [11] demonstrated a
DT-driven system capable of detecting both electrical and mechanical faults by comparing
simulated and measured current signals, showing the value of combining model-based
and data-driven reasoning. In parallel, Diversi et al. [12] proposed an autoregressive-based
MCSA method that improves spectral estimation accuracy and robustness against noise,
illustrating the relevance of adaptive signal models for intelligent fault detection.

Despite these advancements, few studies have proposed a unified conceptual frame-
work that merges model-based residual analysis, adaptive learning, persistence testing, and
reference-state databases into a single architecture suitable for Industry 4.0 environments.
The proposed CMM addresses this gap by integrating physical modelling, intelligent
learning, and redundancy principles into one coherent structure.

It explicitly links electrical and mechanical indicators through adaptive residual mod-
elling and employs built-in safeguards against false learning by referencing previously
validated healthy states. In doing so, it contributes both theoretically and practically to the
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development of intelligent, self-adaptive maintenance systems that support data-driven
decision-making within digital manufacturing ecosystems.

The comparison in Table 1 highlights that existing approaches are either model-based
or data-driven, with few frameworks achieving an integrated, self-adaptive architecture
suitable for Industry 4.0 environments. The proposed CMM seeks to bridge this gap by
combining residual analysis, adaptive learning, and redundancy within a digital-ready
monitoring framework.

By situating the CMM within a broader cyber-physical production framework, this
study strengthens the connection between traditional condition monitoring, digital twins,
and intelligent maintenance systems [10,12]. The research embodies the interdisciplinary
innovation at the core of the Tech Forum Journal’s mission, bridging mechanical engineer-
ing, information technology, and industrial automation. It provides a conceptual model
for how next-generation predictive maintenance systems can merge physical modelling,
statistical learning, and digital interoperability, laying the groundwork for resilient and
intelligent maintenance architectures in Industry 4.0 applications.

2. Case study
2.1. Causes of failures in electric machines

Practically all mechanical movement that is carried out in an industrial plant originates
from the rotor of a machine. They are the ones who put the assembly lines to work and
give life to robotic arms and automation machines. Mechanical and electrical problems can
cause the machine to fail and cause production line downtime. In this sense, it is essential
to know the main causes of failure and know how to avoid them. There is no factory in
the world that does not use electric machines extensively. They are responsible for setting
factories in motion. Because it is such an important part in industries, it is essential to
have a good prevention and maintenance program to prevent the most common failures.
Problems can come from a variety of sources, most of which can be avoided with a good
maintenance program and well-trained staff. Some of the most common failures in electric
machines are:

e  Opverload
Overloading happens when a machine is required beyond its rated torque. This
situation causes the operating electric current to be higher than normal, causing over-
heating. With the machine running at a higher temperature, its useful life decreases
and depending on the level of overload the protection device of the circuit that feeds
the machine will be activated, giving rise to an unexpected stop in the operation of
that machine.

*  Misalignment
Misalignment is a common cause of failures in electric machines. It happens when
the machine drive shaft (rotor) or coupling part is not correctly aligned with the load.
Misalignment results in the transfer of mechanical stresses that are harmful to the
machine, increasing wear and apparent mechanical load. Another undesirable effect
is the increase in vibration both in the applied load and in the machine itself.

¢  Voltage Transients
Voltage transients are the voltage signals of transient characteristics that happen
whenever a circuit or load is triggered. These transients are associated with large
spikes in electromagnetic interference and, depending on their peak and frequency
values, can cause damage to the devices connected in the circuit in which the transient
happens. The big problem for machines is the breakage/loss of insulation in the
machine winding. Since voltage transients have different causes and are not always a
recurring phenomenon, it is difficult to find the cause. Without the insulation in good
conditions, the machine is out of operation and implies the stoppage of the production
line associated with it.
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Table 1. Comparative analysis of condition monitoring and predictive maintenance approaches

Author(s) and | Main  Focus / | Application Key Strengths Limitations Contribution of
Year Methodology Domain Present Study
(CMM)
Duyar et al. [1]; | Model-based fault | Aerospace Established Limited adaptabil- | Extends model-
Eldem & Duyar | detection using | and actuation | analytical re- | ity; not connected | based residual
[2] residual generation | systems dundancy and | to digital or In- | concepts with
and parameter esti- model-based fault | dustry 4.0 envi- | adaptive learning,
mation identification ronments persistence  logic,

and integration into
digital systems

Kumar [4] Review of traditional | General in- | Comprehensive Does not address | Builds upon re-
condition monitor- | duction motor | summary of | integration with | viewed limitations
ing methods such | systems conventional diag- | digital or learning- | by  proposing a
as MCSA, vibration, nostic techniques | based methods hybrid digital-ready
and thermal analysis framework
Krause et al. [3] | Non-intrusive Industrial ro- | Accurate for elec- | Susceptible to | Enhances diagnostic
MCSA using spec- | tating machin- | trical fault detec- | noise and variable | reliability by fusing
tral analysis of motor | ery tion under stable | load conditions; | electrical and me-
currents conditions limited to electri- | chanical indicators
cal domain
Chitariu [6] Electrical =~ power- | Electrical Combines power | Lacks adaptive in- | Incorporates model-
based analysis for | machines and | signal analysis | telligence and dig- | based  adaptation
fault detection in | drives with physical | ital integration and fault-state pro-
three-phase  asyn- insight tection for real-time
chronous motors diagnostics
Hector & Pan- | Machine learning | Cross-sector Demonstrate Depend heavily | Integrates learning
janathan  [7]; | and predictive main- | industrial scalability = and | on large datasets | into a physics-based
Mallioris et al. | tenance strategies | systems improved fault | and lack inter- | model to retain
[8] for Industry 4.0 classification pretability interpretability and
through Al reduce data depen-
dency
Liu et al. [9]; | Digital twin frame- | Cyber- Enable real-time | Require complex | Provides a theoret-
Chen et al. [10]; | works for online | physical synchronisation infrastructure and | ical foundation for
Yin et al. [11] condition monitor- | industrial between virtual | high data through- | integrating residual-
ing and predictive | systems and physical | put based learning
maintenance assets within digital twin
architectures
Diversi et al. | Autoregressive- Electrical Improved fre- | Focused on sig- | Embeds adaptive

[12] based MCSA for | drives and | quency resolution | nal analysis with- | spectral modelling
enhanced spectral | motor  sys- | and noise toler- | out system-level | into a redundant di-
estimation and noise | tems ance redundancy agnostic architecture
robustness

Chinis & | Implementation of | Small  and | Emphasises cost- | Limited discus- | Aligns with SME ap-

Stavroulakis [5] | predictive main- | medium- effective adoption | sion of hybrid | plicability through
tenance for SMEs | sized enter- | of PAM technolo- | or model-based | scalable, data-light
within Industry 4.0 | prises gies approaches architecture

Present Study
(CMM)

Unified model-based | Induction ma- | Integrates phys- | Currently theoreti- | Establishes a digital-
residual analysis | chines in In- | ical modelling, | cal; requires exper- | ready theoretical
with adaptive learn- | dustry 4.0 en- | statistical learn- | imental validation | framework for intel-

ing, persistence logic, | vironments ing, and redun- ligent, self-adaptive
and reference-state dancy; digital condition monitor-
redundancy twin-compatible; ing

interpretable

¢  Harmonic Distortion
Harmonics are the high-frequency components of an electrical signal. The signal
from the power grid in Brazil is 60Hz. However, in the presence of nonlinear loads,
the voltage/current waveform can suffer distortions that are associated with the
introduction of harmonics into the network, which are signals whose frequency is a
multiple of the nominal frequency of the network. In the case of machines, harmonic
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distortion can be understood as an additional source of energy that circulates through
the windings, generating additional energy losses (which happens in the form of
heat generation). In addition to the increase in temperature, distortions also decrease
machine efficiency.

*  Sigma Current
Sigma currents are the eddy currents that circulate through an electrical circuit. They
are generated by capacitances and parasitic inductances associated with electrical
conductors. These currents are associated with loss of efficiency and decreased service
life. Its prevention involves the use of well-dimensioned and quality conductors,
in addition to avoiding welds or inadequate connections of the conductor, which
compromises the original ohmic characteristics of the cable.

¢ Unbalanced Phases
The machines in operation in the industry are mostly of the induction type with
squirrel cage. They are asynchronous machines powered by three-phase circuits. For
the correct operation of the machine and generation of the rotating field, it is important
that the three phases that feed the stator are balanced.
Unbalanced circuits can generate distortions in the electrical characteristics of the cir-
cuit and create stalling situations. In general, it also causes overheating and problems
in the insulation of the machine windings.

e  Soft foot
This problem, the origin of failures in electric machines more common than one might
think, concerns cases in which the fixing of the machine’s feet or its driven component
are not seated on the same surface. This operating condition can cause new mechanical
misalignment stresses to be introduced into the assembly when tightening the fixing
screws of each foot.
The main impact of the soft foot is the misalignment of the machine and load shafts.
To avoid the problem, it is necessary to affix both the machine and the load in such a
way that the seating does not cause additional vibration or transfer of forces to the
machine.

2.2. The induction machine parameters and calculus structure

Its construction aspects are shown in Figure 1.

ort-ereut Soldered

E(> Copper Bars

Three-phase Random:
winding distributed Enamelled Wire
!:,; in grooves at 120°

et of Insulated

M.agn_etlc E> ilicon Iron Sheets
Circuits nd Joints

Figure 1. Construction aspects of the 3 phase induction machine

The constructive form of the Windings is shown in Figure 2.

Low voltage < 2kV

Winding I:> Power < 600HP
Wire (or coiled) "Random” placement of

the winding in the

Insulated copper bars

Bar winding (or E> High voltage and power
preforms; "Orderly"” placement of

the coils

Figure 2. Constructive form of the 3 phase induction machine
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The stator isolation in machines with bar windings has:

e Insulating wall: thicker element that separates the coil assembly from the outside. It
must be to withstand the voltage corresponding to the level of the machine.

¢  Insulation between turns and elementary conductors: The turns formed individually
to reduce losses. It is necessary that there is isolation between them and between the
conductors that form them.

¢  Protective straps and covers: protective straps and covers are used to protect those in
the groove areas.

Disassembling a machine is a way to better understand its inside and parts, as shown
in Figure 3.

Figure 3. Components of a 3 phase induction machine

The Working Principle of an induction machine is:

*  Three sinusoidal currents have the same amplitude and are 120° out of step with each
other

*  Three coils of equal impedance are arranged 120° geometrically to each other

*  The sine currents circulating through the 3 coils produce a rotating magnetic field of
constant intensity.

Leading to a sequence of electromagnetic effects, as shown in Figure 4.
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Figure 4. sequence of electromagnetic effects
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And to the sequence of relations as shown in Figure 5.

System
Phase

— F"’ee"’a';afgo";’i"di“g }:1\/ Rotating field 60f/P

\/

FEM Induced

Current Turns In ¢c by Rotating
Rotor Turns understréss

Rotor Turns

Law of Force on Rotor Torque on :D Machine
-savart | frurns —D Rotor Rotation

Figure 5. Sequence diagram

The Equivalent Circuit of Moving rotor is shown in Figure 6.

Ieﬁ | Re &3 R r

Figure 6. The equivalent circuit of the asynchronous machine reduced to the stator

Several operating regimes can be distinguished: as a motor, as a generator and as a
brake. Depending on the ratio of Ns and Nr speeds, one can have:

¢ Ifs<0, then works as asynchronous generator.

e Ifs=0, then the asynchronous machine is free load.

e If0 <s <1, then works as asynchronous motor.

¢  If s=1, then the asynchronous machine is at startup.

e Ifs>1,Nr < 0 (rotor rotates in the opposite direction to the rotating field), then works
as a brake.

The power balance is shown in Figure 7

Power Absorbed in Stator

Pops = P, = 3Ucl, cos @,

Power received at the rotor

Iron losses in stator Pp=Pap = Pop, — Py Mechanical power delivered
Pope = 3 = = 3RP1P2 Iron losses in the rotor y the’ ;haﬂ

RP Prec = 3R, 17
losses in copper in stator P = 0 Additional losses

P, = 3ReI?

losses in copper in the rotor pr
2
Pre, = 3RHL
Useful mechanical power
Pitit = Pnu = Pnec — PT

Example of additional losses:
friction, twisting of shafl, couplings and ventilation

Figure 7. Example of additional losses: friction twisting of shaft, couplings and ventilation

For the machine analysis, the total mechanical power is at focus. Figure 8. shows the
mechanical power in the equivalent circuit and its equation.
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Total mechanical power of the machine is shown in Figure 10.

Pmec
4

Ru

Figure 10. Total mechanical power of the machine
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3. Analysis of electric machines with CMM (Condition Monitoring of machines)
technology

CMM is a recent electric machine analysis technology, which works based on Artificial
Intelligence that compares the real machine to be monitored, with a mathematical model of
the machine, operating at different load conditions. This mathematical model is obtained
from a learning period lasting a few days. The CMM diagnostic monitoring system is also
designed to detect electrical faults in machines in response to the limitations of vibration
monitoring. In addition to electrical failure modes, it also detects mechanical failure modes
in the machine or driven machinery. It appears as the only alternative in situations where
dedicated vibration monitoring is not practical, economical or comprehensive enough. It
can detect changes in the load that the machine is facing due to anomalies in the equipment
or driven process, such as cavitation or clogged filters and screens. The CMM is installed
in the power supply frame of the machine and thus, as it does not require the installation
of a sensor in the machine itself or in the driven machine, unlike when using a vibration
analyzer, it is especially suitable for inaccessible driven equipment or in hazardous areas
and is applicable to most types of pumps, compressors and similar machines. It is also
suitable for monitoring submersible, wellbore, downhole and encapsulated pumps.

The parameters to measure and observe are:

¢  Temperature monitoring

*  Vibration monitoring

¢ Voltage monitoring

®  Pressure monitoring

*  Rotational speed monitoring
¢  Force monitoring

And the flaults that can be detect are:

*  Bearing failures

¢ Overheating

¢ Shaft unbalance

¢  (learance mounting

*  Gear tooth failure

¢  Load misalignment

*  Stator eccentricity

¢ Other catastrophic machine failures
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To perform the analysis of electric machines, the CMM monitor uses a combination
of dynamic voltage and current waveforms, along with learned models, to detect faults
in the machine or driven equipment. The monitor detects differences between the current
observed characteristics and the learned characteristics and relates these differences to
failures. The operating principle of the CMM monitor is based on the elaboration of a
mathematical model of the electric machine and the observation of deviations from this
model. The detection of electric machine failures is based on a machine model, learned
by the monitor, based on physics, in which the constants in the model are calculated from
real-time data and compared to previously learned values. Mechanical fault detection is
based on the power spectral density (PSD) amplitudes in specific frequency bands, relative
to the learned values. This information is automatically combined with diagnostic expertise.
Because of this spectral band approach, mechanical flaw detection provides guidance for
a class of potential flaws. The sensitivity to some failures (e.g. rolling element bearing
failures) will decrease with distance from the component in the process of failure. On the
other hand, faults that increase machine load are independent of the distance from the
machine.

For modelling and fault detection, the CMM uses four different approaches to fault
detection and analysis:

*  based on the internal characteristics of the electric machine

¢ based on frequency analysis of the residual current spectrum

¢ analyses the actual voltages and currents of the electric machine supply to check for
certain types of faults in the mains supply and current

* uses data from a database of similar electric machines to provide an independent
diagnostic reference.

For an ideal electric machine, the voltage and current waveforms are sinusoidal. The
change in the mains voltage creates magnetic forces that cause the rotor to rotate, and the
amplitude and phase of the machine currents are related to the input voltages through
the internal mechanical and electrical operation of the machine. The internal electrical
and mechanical parts of the electric machine can be thought of as a transfer function that
converts the waveform of the input voltage into the waveform of the output current.

The monitor uses a linear model for the internal electrical and mechanical parts of the
electric machine. This physics-based model is derived from a set of differential equations
and can be expressed as a transfer function. During the learning process, the monitor
determines the coefficients of this model. For a normal electric machine, the model transfer
function is a great approximation to the actual physical transfer function of the machine.

During monitoring, the CMM monitor measures the input voltage waveform and
passes it through the model’s transfer function to obtain a theoretical current waveform.
Meanwhile, the actual transfer function of the machine converts the waveform of the
input voltage into the observed current waveform (measured). The theoretical current
waveform is subtracted from the measured current waveform to produce a residual current
waveform. The residual waveform contains the deviations between theory and reality, and
the monitor uses this residual waveform for mechanical failure analysis. Changes in the
internal characteristics of the electric machine (e.g., a short-circuited winding) will cause
the actual transfer function of the electric machine to be altered. During monitoring, the
CMM unit obtains the measured waveforms of voltage and current and calculates a new
set of observed coefficients for the internal model of the machine. The coefficients of the
original model are subtracted from the observed coefficients to produce residuals. These
residues are used to detect internal problems of the electric machine.

In an ideal electric machine, the rotor would be perfectly centered in the stator gap,
rotate smoothly and is balanced. In real machines, the rotor is never perfectly centered
on the stator, the bearings and the driven equipment create forces and vibrations, and the
rotor always has some imbalance. Mechanical breakdowns disturb the position of the rotor
and create disturbances and distortions in the actual waveforms. As faults develop in the
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machine assembly, they cause the actual output current to deviate even further from the
theoretical.

A failure in a bearing will cause a periodic disturbance in the position of the rotor;
This disturbance in the position of the rotor will create a corresponding disturbance in
the clearance of the air gap and modulation of the amplitude of the machine current.
Modulation produces sidebands around the grid frequency in the residual current spectrum
and the distance of the sidebands from the grid frequency will match the frequency of the
bearing defect.

Other types of faults can produce a wide variety of additional frequency content in
the actual waveforms. CMM processing looks for this additional frequency content and
uses it to diagnose different classes of mechanical problems.

The CMM monitor reports categories of faults that act as indications and point to areas
that should be investigated further. It uses four independent fault detection methods that
cover two categories: electrical and mechanical.

Electrical breakdowns are associated with internal machine problems or external
power problems. The CMM unit monitors both using two independent methods. Internal
machine faults are detected using the learned internal model of the machine as a reference.
During each monitoring iteration, the monitor calculates a set of eight internal machine
model parameters based on the observed voltage and current. These observed parameters
are compared with the parameters obtained during the learning phase and significant and
persistent changes are detected and reported as electrical faults. These failures include the
following examples:

*  Loose windings
e  Stator Problem
e  Short circuit

The external power supply is directly checked for voltage or current unbalance, voltage
range, maximum current, and low voltage or current.

Categories of mechanical failures are detected and diagnosed using the PSD spectrum
of the residual current waveform. The residual current represents the difference between the
observed current and the theoretical current produced by the internal model of the machine
using the same observed voltage. The PSD spectrum is divided into twelve frequency
bands that are usually associated with certain mechanical problems (listed below). Analysis
of these frequency bands yields classes of failures for further investigation.

¢  Lose Foundation/Components

¢ Unbalance/Misalignment/Coupling /Bearing
e Belt / Drive Element / Driven Equipment

*  Bearing

* Rotor

The machine database provides an independent analysis if the CMM unit learns
a faulty system. The machine database consists of normal and high values for each of
the twelve PSD spectrum bands based on experience with many similar machines. If a
residual value of the PSD spectrum range exceeds the High value of the database, after the
persistence check, the monitor will warn you that something is wrong.

CMM is a powerful electric machine monitoring system. However, there are some
limitations in its use and interpretation:

e It cannot be used for DC or single-phase machines

¢  For variable frequency drives, the cut-off frequency of the drive should be higher than
a few kHz

e The CMM unit cannot be used on machines with rapidly varying voltage or power.
The load /speed cannot always vary very quickly due to the need for learning time,
for each load condition.

Mechanical diagnostics are energy-based in twelve spectral frequency ranges. This
is, by nature, a rough analysis and diagnostic indications usually represent only broad
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classes of problems. As is normal in permanent monitoring systems, the user will need to
implement additional inspections to confirm and determine the actual failure.

The CMM cannot be used on machines with rapidly varying voltage or power. This is
not a serious restriction for most applications, but some applications, such as shredders, do
not meet this requirement. If a sudden change in load occurs, the monitor will reject that
sample; However, the same machine could constantly run with some load, and this would
allow the unit to monitor the machine.

The CMM unit works very well in applications where the machine is located some
distance from the current or potential transformers. However, the power supply at the
measuring point used must be dedicated to a single machine. On the other hand, a set of
power stations can be used for all machines that are supplied from the same voltage source.
The current measurement constraint is a consideration for subsea applications where power
can be supplied to the seabed only to branch out to multiple machines. In this case, a CMM
unit cannot be used for the main power. However, it could be used if current transformers
could be installed in each branch.

4. Theoretical Results and Contributions

Although this study does not include experimental validation, it provides original
theoretical results by formalising a Condition Monitoring Method (CMM) that extends be-
yond conventional Machine Current Signature Analysis (MCSA). The proposed framework
introduces several innovations:

1. Unified theoretical model — The paper establishes a conceptual model that jointly
interprets electrical and mechanical indicators through model-based residual analysis,
enabling a holistic understanding of induction-machine behaviour under fault conditions.

2. Intelligent diagnostic architecture — It formulates an alarm logic that combines
statistical analysis with an adaptive persistence test, creating a self-adjusting mechanism
capable of differentiating transient events from persistent faults.

3. Adaptive learning with fault-state protection — The framework defines a database
of reference machine states that prevents the system from mis-learning an already faulty
condition — a feature rarely described in prior literature.

4. Redundant and robust design principles — Built-in redundancy across multiple di-
agnostic pathways is proposed to enhance reliability and maintain diagnostic performance
even with partial signal loss or sensor degradation.

5. Integration with Industry 4.0 paradigms — The model explicitly connects condition
monitoring to cyber-physical and data-driven production systems, defining how CMM can
operate as part of digital maintenance architectures.

These contributions collectively represent the main original results of this theoreti-
cal study. They provide a foundation for implementing and experimentally validating
intelligent, model-based predictive-maintenance systems in future work.

5. Conclusions

This study presented a theoretical approach to the condition control of three-phase
induction machines within the framework of Industry 4.0, emphasising the combined use
of electrical and mechanical indicators for early fault detection. The proposed Condition
Monitoring Method (CMM) employs model-based residual analysis and frequency-domain
interpretation to identify deviations in machine behaviour that precede critical failures.

CMM is a powerful system for monitoring and analysing electric machines. Its effec-
tiveness arises from sophisticated signal-processing and diagnostic algorithms, reinforced
by built-in redundancy that enhances robustness. The method’s adaptive learning capabil-
ity provides both sensitivity and flexibility, while its database of reference machine states
prevents missed alarms caused by learning an already faulty condition. The alarm logic
integrates statistical analysis with an adaptive persistence test, enabling the system to
distinguish between transient anomalies and persistent faults. Together, these features
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represent a significant improvement over conventional Machine Current Signature Analysis
(MCSA) and are consistent with results reported in numerous industrial case studies.

The principal innovation of this work lies in the formulation of a unified theoretical
framework that integrates model-based monitoring, adaptive statistical decision-making,
and intelligent alarm management within an Industry 4.0 context. The study contributes to
knowledge by defining a conceptual architecture that combines physical modelling with
digital analytics, demonstrating how redundancy, adaptive learning, and data connectivity
can be embedded into predictive maintenance systems. This synthesis bridges traditional
condition monitoring with cyber-physical production systems, providing a new theoretical
basis for the development of intelligent, self-adaptive maintenance solutions.

Looking ahead, the integration of model-based CMM with machine learning and cloud-
edge analytics will further enhance adaptability, accuracy, and scalability. Future research
will focus on validating the proposed framework under diverse operating conditions and
quantifying its diagnostic performance, computational efficiency, and long-term stability.

In summary, the CMM provides a robust theoretical foundation for predictive mainte-
nance of induction machines in Industry 4.0 applications—combining engineering rigour,
data-driven intelligence, and digital interoperability to enable more efficient and resilient
electromechanical systems.
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