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Abstract: Traditional approaches to modeling normal impacts in rigid multibody systems rely on
momentum balance equations, often invoking Newton’s hypothesis to define the restitution coefficient
via relative normal velocities before and after impact. However, when friction is involved, the impact
dynamics become more intricate, allowing for various modes such as sliding, sticking, or reverse
sliding. The momentum balance equations involve changes in velocity and two impulse components
- normal and tangential to the contact surfaces. To solve these equations, two additional conditions
are required: one from Coulomb’s law and the other from the restitution coefficient definition.
Unfortunately, Newton’s hypothesis yields inaccurate results, necessitating the use of Poisson’s
hypothesis, which defines the restitution coefficient through normal impulses during compression
and restitution periods. This paper presents a novel formulation for impacts with friction in planar
flexible multibody systems. We employ the floating frame of reference formulation to model flexible
bodies and develop a computational algorithm, leveraging Routh’s graphical techniques, to calculate
normal and tangential impulses at the contact point.

Keywords: flexible multibody dynamics, impact with friction, momentum balance equations, routh’s
diagram, poisson’s hypothesis

1. Introduction

The development of the generalized impulse-momentum balance equations stemmed
from the application of impulsive dynamics to collisions in multibody systems. Initially,
the impulse-momentum model was successfully applied to rigid body multibody systems
[1,2]. Later, it was extended to include both rigid and flexible bodies through algebraic
equations [1]. This extension incorporated flexibility via the finite element method and
utilized component mode synthesis to reduce flexible coordinates, with Newton’s rule
defining the coefficient of restitution.

However, the impulse-momentum model was initially based on rigid body consid-
erations, necessitating examination of its applicability to impacts involving deformable
bodies. Unlike rigid bodies, deformable bodies do not experience instantaneous velocity
jumps throughout the body upon impact, except at the point of contact. Several studies [3]
investigated the applicability of the rigid body concept of the coefficient of restitution to
flexible bodies, concluding that the momentum balance approach can confidently predict
impact responses in flexible body dynamics.

Further research [4] demonstrated that the impulse-momentum model yields con-
sistent results when using a sufficient number of deformation modes, regardless of the
selected mode shapes. The velocity of every point on the flexible body converges to zero,
except in the impact zone, and there is no jump in reaction forces immediately after impact.
This indicates that the impulsive force propagates as a wave with a finite speed.

Previous works solved only a simple balance, artificially removing the impacting rigid
body from the contact area after the first balance. However, impacts involving flexible
bodies have a finite duration, generating elastic waves that excite the flexible body’s
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geometry and are reflected back multiple times before the process concludes. The impulse-
momentum model’s assumption of constant coordinates contrasts with the analysis of
impact-induced vibrations, which arise from flexible bodies’ elastic motion during contact.
Despite this, the generalized impulse-momentum balance equations remain effective [2].

The impulse-momentum equations remain valid due to the stepwise solution of
the collision process, which involves simulating the impact through multiple balances.
This numerical approach allows the system configuration to change between balances,
unrelated to the actual phenomenon of successive impacts. The number of times the
generalized impulse-momentum balance equations must be solved to complete the impact
process depends on the number of coordinates used to describe flexibility and the time step
employed.

As the number of flexible degrees of freedom increases, so does the number of balances
required, resulting in a decrease in the intensity of instantaneous impacts. This occurs
because the mass associated with the contact section decreases as the geometric discretiza-
tion is refined. In a continuous approach, the mass section is zero, allowing its velocity to
change instantaneously with zero impulse [5].

The coefficient of restitution, included in the formulation to account for energy losses
near the contact area, becomes challenging to interpret under these conditions. This is
understandable, as continuous contact is simulated as a virtual succession of instantaneous
impacts, where energy is assumed to be lost locally at each impact. Despite this, satisfactory
results are achieved with a unity coefficient of restitution.

The previous works mentioned earlier did not consider friction, which adds complexity
to the problem. Friction at contact points or surfaces can lead to various impact modes,
such as sticking, sliding, or reverse sliding. The generalized impulse-momentum balance
equations must account for velocity changes and two impulse components: one in the
normal direction and the other in the tangential direction of the impacting surfaces. To
solve these equations, two additional conditions are required: one from Coulomb’s law of
friction and the other from the definition of the coefficient of restitution.

Several authors (Brach, 1989; Kane, 1984) have demonstrated that using Newton’s
hypothesis can violate energy conservation principles in certain cases. Therefore, Pois-
son’s rule is generally preferred for frictional impacts. [1] studied frictional impact in
planar rigid multibody systems, developing an algorithm to generate Routh’s diagrams
(Routh, 1891) for calculating impulse components. [3] used similar equations but employed
the linear complementary problem technique to calculate impulse components, which is
computationally efficient but slightly deviates from Coulomb’s law.

[5] compared both formulations and found that they yield similar results in most cases,
but differ in specific situations. These differences occur when reverse sliding follows sliding
or when sticking is followed by sliding, highlighting the need for careful consideration of
frictional effects in impact dynamics.

This paper builds upon the formulation proposed [4] and extends it to the frictional
impact of planar flexible multibody systems. The floating frame of reference is utilized
to describe flexibility, and Poisson’s hypothesis is employed to define the coefficient of
restitution. Routh’s diagrams are used to calculate the impulse components, and the
continuous impact of finite duration is simulated through successive virtual infinitesimal
impacts.

The motivation behind this work is to investigate whether the presence of friction
affects the applicability of the impulse-momentum approach, originally developed for
rigid bodies, to systems with flexible bodies. If successful, this approach will provide an
alternative to established force-based methods.

2. Floating Frame of Reference Formulation

The floating reference methods are widely used in the literature, with numerous au-
thors contributing to their development. To describe the system’s movement, a coordinate
system is associated with each body, capturing the rigid body motion. Elastic displace-
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ments, calculated using small deformation theory, are superimposed onto the rigid motion.
The global position of an arbitrary point on body i can be expressed as:

rj = Rj + Ajūoj + Sjq f j (1)

where:

• Rj is the set of Cartesian coordinates defining the body reference origin’s location
• Aj is the transformation matrix between local and global reference systems
• ūoj is the point’s position in the undeformed state, expressed in the local system
• Sj is a space-dependent shape matrix
• q f j is the vector of time-dependent elastic generalized coordinates of the deformable

body

This separation between rigid body motion and elastic displacements is not unique,
allowing for different reference conditions to be selected for the same problem. The analyst
should choose the best reference conditions, typically those yielding the smallest number
of elastic coordinates. The main advantage of this representation is its ability to efficiently
describe complex motions.

3. Applicability of the Component Synthesis Method

The component synthesis method is highly applicable, enabling a significant reduction
in the number of elastic coordinates. This method is computationally efficient, making it a
valuable tool. Typically, the deformed shape of the body is represented by superimposing
the normal vibration modes of the body, constrained by the reference conditions. In most
cases, static deformation modes are not necessary, although they can occasionally improve
convergence or simplify the formulation, such as in natural coordinates with fixed frontiers,
where they facilitate imposing kinematical constraints by sharing coordinates.

The Lagrange multipliers technique is employed to account for coordinate constraints.
The equations of motion are:

Mq̈ + Kq + CTλ = Q

Cq − t = 0
(2)

where:

• M is the mass matrix
• K is the stiffness matrix
• C is the constraint matrix
• q is the vector of generalized coordinates
• λ is the vector of Lagrange multipliers
• Q is the vector of external forces
• t is the vector of constraint forces

4. Generalized Impulse-Momentum Balance Equations

Assuming a very short time interval for impact, the reference and flexible coordinates
are considered constant. Integrating the equations of motion during this interval yields:

M∆q̇ + CTλ = Pg

Cq∆q̇ = 0
(3)

Eliminating λ from these equations gives:

λ = [Cq M−1CT ]−1Cq M−1Pg = HPg (4)

Substituting Eq. (4) into Eq. (3) results in:

∆q̇ = M−1[I − CT
q H]Pg (5)
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Since the velocity problem in a multibody system is linear, the relative velocity of
contact points can be expressed as a function of the derivative of the coordinates vector:

vr = Dq̇ (6)

The matrix D, dependent on the position at each time step, is used to obtain the
tangential and normal components of the relative velocity. Two unit vectors, n and t, are
defined, with n perpendicular to the contacting surfaces and t along the tangential direction
and perpendicular to n. The relative velocity components can be expressed as:

vn = nTvr = nT Dq̇ = cT
n q̇

vt = tTvr = tT Dq̇ = cT
t q̇

(7)

Using Eqs. (5) and (7), we can write:

v+n = v−n + ∆vn = v−n + cT
n ∆q̇ = v−n + cT

n M−1[I − CT
q H]Pg

v+t = v−t + ∆vt = v−t + cT
t ∆q̇ = v−t + cT

t M−1[I − CT
q H]Pg

(8)

where v+n and v−n are the relative normal velocities after and before impact, respectively,
and similarly for the relative tangential velocities. The generalized impulse can be separated
into normal and tangential components:

Pg =
∫
( fnn + ftt)dt = cn

∫
fndt + ct

∫
ftdt = cnPn + ctPt (9)

where fn is the normal contact force, ft is the frictional force, and Pn and Pt are the
normal and tangential impulses due to impulsive forces fn and ft. Substituting Eq. (9) into
Eq. (8) yields:

v+n = v−n + mnnPn + mntPt

v+t = v−t + mntPn + mttPt
(10)

Assuming a very short time interval for impact, the reference and flexible coordinates
are considered constant. Integrating the equations of motion during this interval yields:

M∆q̇ + CTλ = Pg

Cq∆q̇ = 0
(11)

Eliminating λ from these equations gives:

λ = [Cq M−1CT ]−1Cq M−1Pg = HPg (12)

Substituting Eq. (4) into Eq. (3) results in:

∆q̇ = M−1[I − CT
q H]Pg (13)

Since the velocity problem in a multibody system is linear, the relative velocity of
contact points can be expressed as a function of the derivative of the coordinates vector:

vr = Dq̇ (14)

The matrix D, dependent on the position at each time step, is used to obtain the
tangential and normal components of the relative velocity. Two unit vectors, n and t, are
defined, with n perpendicular to the contacting surfaces and t along the tangential direction
and perpendicular to n. The relative velocity components can be expressed as:

vn = nTvr = nT Dq̇ = cT
n q̇

vt = tTvr = tT Dq̇ = cT
t q̇

(15)
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Using Eqs. (5) and (7), we can write:

v+n = v−n + ∆vn = v−n + cT
n ∆q̇ = v−n + cT

n M−1[I − CT
q H]Pg

v+t = v−t + ∆vt = v−t + cT
t ∆q̇ = v−t + cT

t M−1[I − CT
q H]Pg

(16)

where v+n and v−n are the relative normal velocities after and before impact, respectively,
and similarly for the relative tangential velocities. The generalized impulse can be separated
into normal and tangential components:

Pg =
∫
( fnn + ftt)dt = cn

∫
fndt + ct

∫
ftdt = cnPn + ctPt (17)

where fn is the normal contact force, ft is the frictional force, and Pn and Pt are the
normal and tangential impulses due to impulsive forces fn and ft. Substituting Eq. (9) into
Eq. (8) yields:

v+n = v−n + mnnPn + mntPt

v+t = v−t + mntPn + mttPt
(18)

where the generalized impact coefficients mnn, mnt, and mtt are defined as:

mnn = cT
n M−1[I − CT

q H]cn

mnt = cT
n M−1[I − CT

q H]ct

mtt = cT
t M−1[I − CT

q H]ct

(19)

These coefficients can be evaluated knowing the inertia properties and coordinates at
the time of impact. Once evaluated, only the normal and tangential impulses Pn and Pt are
needed to determine the velocities after impact, as shown in Eq. (10).

5. Routh’s Diagrams

Routh’s method combines Poisson’s rule and Coulomb’s friction law with Eq. (10) to
calculate the generalized impulses. Poisson’s hypothesis defines the coefficient of restitution
as:

e =
PnR
PnC

(20)

relating the accumulated normal impulses during compression (PnC) and restitution
periods (PnR). Therefore:

Pn = PnC + PnR = (1 + e)PnC (21)

Coulomb’s law provides the sliding and sticking conditions, which can be described
as:

sticking: dPt < µdPn (22)

where µ is the friction coefficient. [3] developed a graphical technique to determine
impulses, using diagrams that represent normal impulse versus tangential impulse. These
diagrams feature four distinct lines, each corresponding to different contact point scenarios:

• Three lines represent possible contact point behaviors: sliding, sticking, or reverse
sliding.

• The fourth line represents the maximum compression point, marking the end of the
compression period when reached.

These lines can be mathematically expressed as:
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Line of limiting friction (F): Pt = −µ

(
v−t
|v−t |

)
Pn

Line of sticking (S): v−t + mntPn + mttPt = 0

Line of maximum compression (C): v−n + mnnPn + mntPt = 0

(23)

These equations define the boundaries for different contact scenarios, enabling the
determination of impulses and subsequent velocities after impact.

6. Summary of the Procedure

When contact is detected, the integration of the equations of motion (Eq. 2) is halted.
Knowing the position and velocity coordinates at the time of impact (q and q̇−), the
velocities after impact (q̇+) are calculated using the following steps:

1. Evaluate vectors cn and ct
2. Evaluate matrix H
3. Evaluate generalized impact parameters mnn, mnt, and mtt (Eq. 11)
4. Evaluate relative normal and tangential velocities before impact (v−n and v−t )
5. Plot Routh’s diagram (Eqs. 15, 16, and 17) and evaluate PnC and PtC
6. Evaluate total accumulated normal impulse Pn (Eq. 13)
7. Evaluate total accumulated tangential impulse Pt from Routh’s diagram
8. Evaluate change in system velocities ∆q̇ (Eqs. 5 and 9)
9. Evaluate velocities after impact: q̇+ = q̇+δq̇
10. Resume integration of equations of motion with updated velocities q̇+

Note that for simulating impact involving flexible bodies, these steps must be repeated
several times before the process is complete. The first time, integration is halted, and steps
(a) to (j) are applied. However, because flexible bodies may undergo multiple impacts, the
process is repeated until the impact is fully resolved.

Due to the small mass associated with the contact zone of a flexible body (ideally
zero), the impulse and resulting velocity change are also small. Consequently, the bodies
will come into contact again after a few time steps, requiring another momentum balance
solution. After the initial balance, only the contact section should experience a velocity
change as the wave propagation begins. However, due to finite discretization, a larger
velocity jump is observed closer to the contact zone.

Increasing the number of flexible coordinates used to model the flexible body decreases
the mass associated with each degree of freedom and the contact section, resulting in:

• Smaller impulses associated with contact forces
• Velocity jumps affecting areas closer to the contact zone
• More balances needed to simulate the complete process
• Less severe impacts as flexible degrees of freedom increase

7. Numerical Example

The system is analyzed: a pendulum falling under gravity and impacting a fixed
surface. The pendulum consists of a uniform rod with mass m = 1 kg and length l = 1
m, under gravity g = 10 m/s2. Initially at rest in a horizontal position (θ = 90◦), the
pendulum impacts the surface when θ = 80◦. Impact parameters are µ = 1 and e = 1.
This system, considered rigid, has been previously analyzed (Pfeiffer and Glocker, 1996),
showing dissipative behavior due to reversed sliding, where the frictional impulse acts in
different directions during compression and expansion.

8. Conclusion

In this paper, a momentum balance approach has been successfully applied to simulate
the impact of a flexible pendulum with a fixed surface, incorporating friction and flexibility.
The use of Routh’s diagram and the momentum balance technique allowed for the accurate
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capture of the complex dynamics during the impact, including the excitation of flexible
modes and the propagation of waves along the beam. The results showed that increasing
the number of flexible coordinates improved the accuracy of the simulation, with the
five-mode model providing a more realistic representation of the system’s behavior. The
approach demonstrated its ability to reproduce the expected behavior of flexible multibody
systems with friction, including the induction of waves and the influence of flexibility on
the impact dynamics. Future work will focus on extending this approach to more complex
systems and exploring its potential applications in various fields.
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