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Abstract: Optimizing robot manipulator velocity is crucial for enhancing production line efficiency.
This research focuses on minimizing the retraction time of a gravity-influenced robot arm mounted
on a prismatic-rotational joint. By employing B-spline representation, Runge-Kutta integration, and
sequential quadratic programming, we determine optimal control and trajectories. Our findings
reveal that nonlinear dynamics significantly impact minimal-time solutions, producing intricate
control patterns even for simple retraction maneuvers.
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1. Introduction

In the realm of modern industrial automation, robotic manipulators play a pivotal
role in enhancing productivity and efficiency across various sectors, from manufacturing
to healthcare. These mechanical arms, equipped with multiple joints and segments, are
designed to perform precise and repetitive tasks, often under complex conditions. The
ability to optimize the movements of these robotic systems is crucial, not only for ensuring
accuracy but also for minimizing the time required to complete tasks [1]. Time-optimal
control of robotic manipulators has, therefore, become a significant area of research, aimed
at reducing the operational costs and increasing the throughput of automated processes.
By minimizing the time taken for a manipulator to move from one position to another,
industries can achieve faster production cycles, leading to higher output and greater
competitiveness in the market [2].

The challenge of achieving minimum-time maneuvers lies in the intricate balance
between speed and control. Rapid movements must be executed without violating the
physical constraints of the system, such as limits on joint velocities, accelerations, and the
risk of collision with obstacles [3]. These constraints necessitate the use of sophisticated
optimization techniques to determine the optimal control inputs that will drive the ma-
nipulator along the fastest possible trajectory. Among the various approaches available,
numerical optimization methods have proven to be particularly effective, allowing for
the systematic exploration of possible solutions while ensuring that all constraints are
respected [4–6].

This paper focuses on applying numerical optimization techniques to the problem
of determining the minimum-time maneuver for a robotic manipulator. The specific
scenario under investigation involves the retraction of a robot arm, a common task in many
industrial applications, where the arm must be withdrawn to a safe position as quickly as
possible. The study explores different mathematical models and computational methods,
providing a comprehensive analysis of the factors influencing the time-optimal control of
robotic systems. By leveraging the power of numerical optimization, this research aims
to contribute to the ongoing efforts to enhance the performance and efficiency of robotic
manipulators, ultimately benefiting a wide range of automated processes [7].

2. Literature Review

The quest for achieving time-optimal control in robotic manipulators has been a subject
of extensive research for several decades. This area of study is deeply rooted in the broader
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field of optimal control theory, which seeks to determine the best possible control actions
for dynamic systems to achieve a desired objective, such as minimizing time, energy, or
other costs. Early approaches to time-optimal control often relied on indirect methods, such
as the Pontryagin’s Maximum Principle (PMP), which provided a theoretical foundation
for understanding the necessary conditions for optimality. However, while powerful, these
indirect methods tend to be mathematically complex and sensitive to the initial conditions,
making them challenging to apply in practical engineering contexts, especially for systems
with high-dimensional state spaces or intricate constraints [8].

As a result, the focus has gradually shifted towards direct methods of optimization,
which discretize the control problem and solve it using numerical techniques. These
methods, although less precise in some respects, offer greater flexibility and robustness,
making them more suitable for real-world applications. In particular, direct methods allow
for the straightforward incorporation of system constraints, such as limits on joint velocities,
torques, and other physical parameters, which are critical in ensuring the feasibility and
safety of robotic maneuvers. The use of direct collocation, where the state and control
trajectories are approximated by piecewise polynomial functions, has become particularly
popular due to its ability to handle complex systems and constraints effectively.

Numerous studies have applied these direct methods to robotic systems, demon-
strating their effectiveness in various contexts. For instance, researchers have used these
techniques to optimize the path planning of robot arms, ensuring not only time efficiency
but also smoothness and accuracy in motion. The integration of Sequential Quadratic
Programming (SQP) and other advanced numerical algorithms has further enhanced the
capability of direct methods, enabling the solution of large-scale, nonlinear optimization
problems that are common in robotics. These advancements have paved the way for more
practical and scalable solutions, bringing time-optimal control within reach of industrial
applications.

In this context, the current study builds on the foundation laid by previous research,
focusing on the application of direct numerical optimization methods to the specific prob-
lem of minimum-time retraction of a robotic manipulator. By exploring the effectiveness
of these methods in a controlled setting, this research aims to contribute to the ongoing
development of time-optimal control strategies, offering insights that could be applied to a
wide range of robotic systems.

3. Problem Formulation

The core challenge lies in determining the optimal control inputs for a robotic ma-
nipulator to execute a desired motion in the shortest possible time. This is subject to
various constraints such as joint limits, actuator torque limitations, velocity bounds, and
obstacle avoidance. The objective is to minimize the total maneuver time while ensuring
the manipulator adheres to these physical restrictions and reaches the target configuration
accurately [9].

A robotic arm is typically modeled as a series of rigid links connected by joints. The
dynamics of such a system are governed by complex equations involving inertia, gravity,
Coriolis, and centrifugal forces. These forces and moments act on each link, influencing its
motion. Additionally, actuator torques applied at the joints drive the manipulator. Accurate
modeling of these forces is crucial for precise trajectory planning and control [10].

The problem can be cast as an optimization problem. The objective function is the total
maneuver time, which is to be minimized. The decision variables are the joint positions,
velocities, and accelerations as functions of time [11,12].
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3.1. Variables

n : Number of joints in the manipulator

q ∈ Rn : Joint positions

q̇ ∈ Rn : Joint velocities

q̈ ∈ Rn : Joint accelerations

τ ∈ Rn : Joint torques

M(q) ∈ Rn×n : Inertia matrix

C(q, q̇) ∈ Rn×n : Coriolis and centrifugal matrix

G(q) ∈ Rn : Gravity vector

Tf : Final time

q0 : Initial joint positions

q f : Final joint positions

3.2. Objective Function

Minimize the final time:
min Tf

3.3. Dynamic Constraints

The dynamic model of the manipulator is given by the Euler-Lagrange equation:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ

3.4. Kinematic Constraints

The relationship between joint velocities and end-effector velocity is given by:

ẋ = J(q)q̇

where:

ẋ : end-effector velocity

J(q) : Jacobian matrix

3.5. Actuator Limits

Torque limits for each joint:

τmin,i ≤ τi ≤ τmax,i, i = 1, . . . , n

3.6. Joint Limits

Joint position limits:

qmin,i ≤ qi ≤ qmax,i, i = 1, . . . , n

Joint velocity limits:
q̇min,i ≤ q̇i ≤ q̇max,i, i = 1, . . . , n

3.7. Boundary Conditions

Initial and final conditions:

q(0) = q0

q(Tf ) = q f
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3.8. Obstacle Avoidance Constraints

These constraints can be formulated using various methods, such as:

• Distance constraints between manipulator links and obstacles
• Potential field methods

4. Robotic Manipulator Model and Equations of Motion
4.1. Robotic Manipulator Model

A robotic manipulator is typically modeled as a series of rigid links connected by
joints. Common joint types include revolute (rotational) and prismatic (linear). To simplify
the analysis, several assumptions are often made:

• Rigid links: Links are assumed to be infinitely stiff, neglecting deformations under
load.

• Homogeneous links: Links are assumed to have uniform mass distribution, simplify-
ing calculations of mass properties.

• Ideal joints: Joints are assumed to have no friction or backlash.
• Point mass: The mass of each link is concentrated at its center of mass.

While these assumptions simplify the model, their validity depends on the specific
application and desired accuracy. Factors such as link flexibility, joint friction, and motor
dynamics can be incorporated for more advanced models.

The influence of gravity is significant, especially for larger manipulators. It introduces
a potential energy term in the system’s dynamics and affects the equilibrium positions and
motion trajectories.

4.2. Equations of Motion via Lagrangian Mechanics

Lagrangian mechanics provides a systematic approach to deriving the equations of
motion for complex mechanical systems. The Lagrangian of a system is defined as the
difference between its kinetic and potential energies:

L = T − V

Where:

L is the Lagrangian

T is the kinetic energy

V is the potential energy

The kinetic energy of a robotic manipulator can be expressed as the sum of the kinetic
energies of its individual links:

T =
1
2 ∑

i
[miv2

i + Iiω
2
i ]

Where:

mi is the mass of link i

vi is the linear velocity of the center of mass of link i

Ii is the inertia tensor of link i

ωi is the angular velocity of link i

The potential energy is primarily due to gravity and is given by:
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V = ∑
i
[mighi]

Where:

g is the acceleration due to gravity

hi is the height of the center of mass of link i

The equations of motion are derived using the Euler-Lagrange equation:

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
= Q

Where:

q is the generalized coordinates (joint angles or positions)

Q is the generalized forces (torques or forces applied to the joints)

The resulting equations are a set of coupled nonlinear differential equations that
describe the dynamic behavior of the manipulator. The key forces and moments influencing
the system include:

• Inertial forces: Arising from the acceleration of the links.
• Coriolis and centrifugal forces: Due to the relative motion of the links.
• Gravity forces: Acting on the center of mass of each link.
• Actuator torques: Applied by the motors to drive the joints.

These forces and moments interact to determine the manipulator’s motion in response
to given inputs.

5. Results of Optimization and Control Strategy Efficiency
5.1. Derivation of Time-Optimal Solutions

Time-optimal solutions were obtained by formulating the problem as an optimal
control problem and employing numerical techniques. The process typically involves:

1. Problem Formulation: Defining the objective function (minimization of maneuver
time), system dynamics (equations of motion), and constraints (joint limits, actuator
limits, obstacle avoidance).

2. Discretization: Transforming the continuous-time problem into a discrete-time equiv-
alent using methods like direct collocation or pseudospectral methods.

3. Optimization: Employing nonlinear programming solvers (e.g., Sequential Quadratic
Programming, Interior Point Methods) to find the optimal control inputs that mini-
mize the objective function while satisfying constraints.

4. Solution Refinement: Iteratively refining the solution through techniques like mesh
refinement or higher-order polynomial approximations.

The resulting optimal control trajectories provide the time-optimal motion for the
manipulator to reach the desired final configuration.

5.2. Efficiency of Control Strategies

The efficiency of different control strategies can be evaluated based on metrics such
as execution time, tracking accuracy, energy consumption, and smoothness of motion.
Common control strategies include:

• PID control: While simple to implement, PID control often exhibits limitations in
terms of performance and robustness for complex systems like robotic manipulators.
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• Computed-torque control: This method compensates for nonlinear dynamics, but
requires accurate system models and can be computationally expensive.

• Model predictive control (MPC): By incorporating constraints and predicting future
system behavior, MPC can achieve better performance than traditional methods.
However, it requires significant computational resources.

• Optimal control: This approach guarantees optimal performance but can be computa-
tionally demanding, especially for real-time applications.

5.3. Unexpected Complexities and Insights

Several challenges and insights emerged during the optimization and control process:

• Non-convexity: The optimization problem is often non-convex, leading to multiple
local optima. Global optimization techniques or heuristic approaches may be necessary
to find the true global optimum.

• Computational Efficiency: Balancing computational efficiency and solution accuracy
is crucial. Real-time implementation requires efficient algorithms and hardware.

• Robustness: The developed controller should be robust to modeling errors, distur-
bances, and uncertainties.

• Singularity Avoidance: Manipulator configurations where the Jacobian matrix be-
comes singular should be avoided to prevent loss of controllability.

• Energy Optimization: While time-optimal solutions prioritize speed, energy efficiency
is also a critical factor. Considering energy consumption during optimization can lead
to more sustainable solutions.

• Trajectory Smoothing: To reduce wear and tear on the manipulator, generating smooth
trajectories is essential. This can be achieved through filtering or by incorporating
trajectory smoothness as an optimization objective.

6. Conclusion

This research has delved into the intricate problem of determining the minimum-time
maneuver for a robotic manipulator. By modeling the manipulator as a series of rigid
links and applying Lagrangian mechanics, a comprehensive understanding of the system’s
dynamics was established. The formulation of the problem as an optimization task allowed
for the exploration of various numerical techniques to derive time-optimal solutions.

The results underscore the complexity of achieving optimal performance while con-
sidering factors such as computational efficiency, robustness, and energy consumption.
While significant progress has been made in developing effective control strategies, there
remains ample scope for further exploration. Future research could focus on refining
optimization algorithms, incorporating advanced modeling techniques, and addressing
real-world challenges such as uncertainties and disturbances. Ultimately, the successful
implementation of time-optimal control for robotic manipulators holds the potential to
revolutionize applications in fields ranging from manufacturing and logistics to healthcare
and exploration.
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