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Abstract: Astrophysics explores various reasons for the Earth’s axis tilt that manifest in climate
changes in the latitudinal regions of Earth. Gravitational forces, changes in the magnetic field,
asteroid impacts, etc., can influence the position of the Earth’s axis. The Earth’s axis maintains
its orientation in space while revolving around the Sun, represented in physics by unconvincing
discussions. Several hypotheses regarding the rotation of planets and galaxies, including vortex
fields, have puzzled astrophysicists. Astrophysical science has not given sufficient attention to
gyroscopic effects, which are relevant for rotating objects like planets. These gyroscopic effects play a
significant role in climate changes as the Earth moves in its orbit. Advanced publications provide
hypothetical explanations for the stable inclined position of the Earth during its rotation around the
Sun, attributing it to gyroscopic properties that help maintain orientation in space. However, these
interpretations do not correspond to the theory of gyroscopic effects for rotating objects. The present
study showed that gyroscope theory describes the physics of Earth’s inclined position in space as not
permanent and slowly decreasing with time.
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1. Introduction

Astrophysicists have effectively described the rotation of the Earth with its axis tilted
to the orbital plane around the Sun [1]. The Earth revolves around the Sun while also
rotating on its axis, influenced primarily by the gravitational forces of the Sun and the
Moon, with lesser influences from the gravitational forces of other planets [2]. This results
in the periodic occurrence of equinoxes and solstices [3]. Astrophysicists have collected
empirical data on the positions and changes of the seasons in the Earth’s orbit, allowing
them to predict seasonal events with high accuracy [4]. Key topics in research papers
include seasonal climate predictability, climate variability, and climate change [5]. Scientists
describe the stable tilted position of the Earth as it rotates around the Sun by the precessional
motion, which maintains its orientation in space and explains the climate changes [6].
Astrophysicists argue that climate changes occur for several reasons such as solar radiation,
the Earth’s surface altitude, wind directions, geological processes, magnetic pole shifts,
and asteroids’ actions that tilt the Earth’s axis, etc. All of these reasons have influences
on climate change that are proved by empirical data collected by physical methods from
natural objects. These interpretations are based on numerous physical properties and
observational experiences of different origins in their nature, and cannot be presented by
one mathematical model.

Nevertheless, there is one physical aspect that influences the Earth’s climate change
that a mathematical model can describe. The rotations of the Earth around its axis and the
Sun represent the subject of classical mechanics with its theory of gyroscopic effects [7].
Publications on gyroscopic effects show that the inertial torques generated by the spinning
mass of an object permanently change its orientation in space. The external force applied
to a spinning object causes its shift, activating inertial torques that resist the change in the
object’s position. The Earth’s gyroscopic effects result in the decrease of the tilt to the orbital
plane. The Earth’s inclined axis to the orbit around the Sun slowly decreases because of
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acting gyroscopic inertial torques [8]. This process can be described analytically based only
on its gyroscope properties and can clearly show the future Earth’s climate.

Fundamental publications in classical mechanics adequately describe the rotational
processes of planets; however, there is a lack of comprehensive information regarding
the application of gyroscope properties [9]. Engineering mechanics textbooks explain
gyroscopic effects mainly through the principles established by mathematician L. Euler,
specifically focusing on the torque associated with changes in angular momentum [10].
The known simplified gyroscope theories have lacked validation through practical testing
[11]. The planets in orbital rotation around the Sun are under the permanent action of
inertial torque, which is a gyroscopic effect omitted in science [12]. These publications
discussing the gyroscopic properties of planets remained at the level of generalisations and
assumptions [13].

The derived theory of gyroscopic effects for rotating objects has revealed a more
complex understanding of their physics than previously thought [7]. These gyroscopic
effects arise from the interplay of inertial torques generated by the object’s rotating masses
around the axes of Cartesian coordinates. The inertial torques acting around each coordinate
axis comprise two centrifugal torques, one Coriolis torque, and a torque due to the change
in angular momentum. The magnitudes of all torques depend on the geometries of the
spinning objects. The angular velocities of the objects around their axes of rotation reflect
the principles of mechanical energy conservation.

Planetary mechanics focuses on rotating objects modeled as solid spheres [14]. The
Earth’s surface and inner part are mostly liquid but are accepted as solid because their
masses rotate with one angular velocity. Also, the Earth’s form is close to the ellipsoid of
rotation, which can be accepted as a solid sphere. Such assumptions do not cause significant
differences in computing the gyroscopic effects.

Analyzing the inertial torques and the angular velocities of a spinning solid sphere
around axes of rotation represented by mathematical models describes planetary motion.
It clarifies the gyroscopic effects associated with orbital motion around the Sun. Table 1 [7,
Appendix A] presents the fundamental principles of the gyroscopic effects of a spinning
solid sphere [8].

Table 1. Fundamental principles of the gyroscope theory for the solid sphere

1. Set of inertial torques acting on the spinning solid sphere
Generated by Action Equation

centrifugal forces resistance
Tct =

5
36

π3 Jωωxprecession

Coriolis forces resistance Tcr =
5

18
π Jωωx

change in angular momentum resistance Tam.i = Jωωi
precession Tam.i = Jdωkωi

2. Kinetic energy conservation law
Angular velocities of the spinning solid sphere of horizontal

disposition about axes of rotation: ωy =
(

5π3+5π+18
18−5π

)
ωx

Table 1 comprises the following symbols with indices: ω and ωi are the angular
velocities of the spinning solid sphere about axes oz and i, respectively; J and Jd are the
moments of inertia of the solid sphere about its axis of rotation and the diametric line,
respectively; Tk.i is the inertial torque generated by the centrifugal force (ct), Coriolis force
(cr), and the change in angular momentum (am), about axis i.

The inertial torques represented in Table 1 are generated by the sphere’s mass and
are interconnected by the values of the resulting axial torques. Understanding the action
of inertial torques provides broad possibilities for their application in solving gyroscopic
effects in engineering and astrophysics. This manuscript explores the physics of the Earth’s
orbital motion and presents mathematical models for the action of the gyroscopic torques.
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The tilt of the Earth’s axis diminishes continuously because of the persistent influence of
gyroscopic effects, which will eventually dispose it vertically on the plane of orbital motion
around the Sun. The analytical model describes the physics of the Earth’s orbital motion
and enables calculation of the time for future climate stabilization.

2. Methodology

Mathematical models for the Earth’s motion around the Sun, represented in Cartesian
coordinates, are derived using the well-known analytical methods of classical mechanics,
which define the inertial torques acting on a spinning object. The method of cause-and-
effect relationships has allowed for a detailed analysis of the inertial forces generated by the
rotating masses of the Earth. The motion of the Earth around the Sun produces the external
inertial torque T acting on the Earth that generates twelve inertial torques around three
axes of Cartesian coordinates [7]. The impact of this external torque T was overlooked in
mechanics [12]. The inertial torques Tk.i generated by the rotating mass of the Earth and
their actions are illustrated in Figure 1. For the analysis, the Earth is considered as a rotating
solid sphere and the action of all torques and motions are presented in the coordinate
system Σoxyz.

Figure 1. Vectorial picture of the action of the external and inertial torques on the spinning solid
sphere and its motions

The bold and thin circular arrows, T and Tk.i, illustrate the external and inertial torques,
and the rotations around the axes. The external torque T acts counterclockwise around the
axis ox, generating resistance and precession torques, denoted as Tk.i, where the index k
represents the type of torque and the index i indicates the axis of action.

The tape-type circular arrows illustrate the angular velocities ωi of the solid sphere’s
rotation around the ox, oy, and oz axes, all in a counterclockwise direction. The angular
momentum vectors Hx, Hy, and Hz represent the sphere’s rotations around the respective
axes. Changes in the angular momentum of the solid sphere are indicated by the vectors
∆Hx, ∆Hy, and ∆Hz around the axes ox, oy, and oz, respectively. These vectors represent
the direction of action for the precession torques acting on the solid sphere.

The effects of inertial torques generated by the rotating mass of the sphere can be
understood by analyzing the cause-and-effect relationships around the coordinate axes. A
thorough examination of these torques is outlined in the following steps:

The external torque T generates two types of initial torques acting around two axes:

• the resistance torques of the centrifugal Tc.x =
5

36
π3 Jωωx and Coriolis Tcr.x =

5
18

π Jωωx forces acting around the axis ox in the clockwise direction, and
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• the precession torques of the centrifugal Tc.x =
5

36
π3 Jωωx, and the change in the angu-

lar momentum (∆Hx) Tam.x = Jωωx acting around the axis oy in the counterclockwise
direction.
The effects of resistance and precession torques, along with the diagram of centrifugal
forces fct.x, generated by the rotating mass element m of the spinning sphere around
the axes ox and oy, are demonstrated in Figures 2a and 2b, respectively.

Figure 2. The diagram of acting centrifugal forces fct.x and the resulting resistance torque Tct.x around
the axis ox and the precession torque Tct.x around axis oy on the diametric plane of the spinning
sphere

• The diagram in Figure 3 demonstrates the integrated resistance Coriolis torque

Tcr.x =
5

18
π Jωωx,

acting in the clockwise direction around axis ox generated by the Coriolis forces fcr.x
of the rotating mass elements m of the spinning sphere.
The precession torque of the change in angular momentum

Tam.x = Jωωx,

acts around the axis oy and is caused by the sphere’s center of mass. This phenomenon
is well described by the renowned mathematician L. Euler. His inertial torque is con-
sidered a fundamental principle of gyroscope theory and is thoroughly documented
in encyclopedias. Figure 4 illustrates the action of the torque of the change in angular
momentum.
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Figure 3. The diagram of the acting Coriolis forces fcr.x and resulting resistance torque Tcr.x around
axis ox on the circular plane of the spinning sphere

Figure 4. The diagram of the acting precession torque (∆H), Tam.x around the axis oy on the diametric
plane of the spinning sphere

The rotation of the spinning sphere around the other axes creates inertial torques similar
to those caused by centrifugal and Coriolis forces, as well as the torque resulting from
changes in angular momentum. Detailed explanations of the inertial torques can be found
in several publications [7,12].

1. The initial inertial torques Tc.x =
5
36

π3 Jωωx and Tam.x = Jωωx, along with the load
torques, generate the resistive inertial torques of the centrifugal and Coriolis forces
acting around the axis oy. The total torque acting around the axis oy is

Ty =
5

36
π3 Jωωx + Jωωx −

5
36

π3 Jωωy −
5

18
π Jωωy.

2. The resulting torque Ty acting around the axis oy in the counterclockwise direction
generates the precession torques of the centrifugal force Tct.y and the torque of the
change in the angular momentum (∆Hy), Tam.y, acting around the axis ox in the
clockwise direction. The torques Tct.y and Tam.y are combined with the initial resistance
inertial torques of the centrifugal Tct.x and Coriolis Tcr.x torques. The total value of
the resistance torques to the load torque T acting around the axis ox is

Tr.x = − 5
36

π3 Jωωx +
5

18
π Jωωx +

5
36

π3 Jωωy + Jωωy.
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3. The rotations of the sphere around the ox and oy axes cause changes in the angular
momentum, resulting in torques Tam.x = Jxωxωy or (∆Hz) and Tam.y = Jyωyωx or
(∆Hz), respectively. Here, Jx,y = 2

5 mR2 represents the moment of inertia of the sphere
around its axis, while ωy and ωx denote the angular velocities of the sphere around
the oy and ox axes, respectively. The precession torques Tam.x and Tam.y have equal
magnitudes, act around the oz axis in opposite directions, and are mutually subtracted.
They do not influence other inertial torques.

4. The torque

Tx = T − 5
36

π3 Jωωx −
5

18
π Jωωx −

5
36

π3 Jωωy − Jωωy,

acts around the axis ox and results in precession torques: the centrifugal torque Tct.x
and the torque of the change in angular momentum Tam.x acting around the axis oy.
These torques were initially presented as the initial ones in step 1 and are not shown
in Figure 1.

5. The new resistive centrifugal torque

Tc.y =
5
36

π3 Jωωy and Coriolis torque Tcr.y =
5

18
π Jωωy,

act around the oy axis, counteracting the corrected inertial torques, Tc.x = 5
36 π3 Jωωx

and Tam.x = Jωωx.
6. The resulting torque

Ty =
5

36
π3 Jωωx + Jωωx −

5
36

π3 Jωωy −
5

18
π Jωωy,

generates the precession torques of the centrifugal force Tct.y and the torque of the
change in the angular momentum Tam.y acting around the axis ox in the clockwise
direction. These torques are combined with the resistance inertial torques of the
centrifugal Tct.x and Coriolis Tcr.x torques of the axis ox.

7. The action of the inertial torques generated by the spinning sphere is manifested by
its interrelated angular velocities

ωy =

(
5π3 + 5π + 18

18 − 5π

)
ωx,

around the axes according to the principle of kinetic energy conservation (Table 1).

The action of the inertial torques on the spinning sphere projects onto the Earth’s orbital
motion. The Earth has an inclined axis at an angle β. It revolves around its axis with an
angular velocity ωe, exhibiting gyroscopic properties as it rotates counterclockwise around
the Sun (Figure 2) [7].

The Earth’s orbital motion generates an external inertial torque, Ts, that causes the
Earth to rotate synchronously about the Sun [12]. The external torque is presented by the
expression

T = Jε,

where J is the Earth’s moment of inertia and ε = ω2 is its angular acceleration. Here, ω
denotes the Earth’s angular velocity around the Sun, which is much smaller than ωe of its
rotation on its axis.

The Earth’s gyroscopic effects arise from the action of inertial torques generated by
the external torque T during the Earth’s orbit around the Sun. The external torque T acts
on the rotating Earth, developing a set of gyroscopic torques that resist the action of T. This
set of gyroscopic torques is always less than the external torque T, meaning that the Earth
is constantly under the action of a resultant inertial torque, which gradually decreases its
axial angle inclination β.
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The gyroscopic effects permanently affect the Earth, causing its axis to align perpen-
dicularly with the orbital plane around the Sun. This decrease in the inclination of the
Earth’s rotational axis resembles the behaviour of an inclined spinning top on a table. The
force of gravity acting on the tilted spinning top generates gyroscopic torques that return
it to a vertical position. Over time, the Earth’s axial inclination change will stabilise the
climate at various latitudes.

Figure 5 illustrates the external and inertial torques acting on the Earth, along with its
motions about the movable Cartesian coordinates Σo1x1y1z1 and the fixed one around the
Sun, denoted as Σoxyz. Circular arrows represent the inertial torques, while the Earth’s
rotations around its axis and the Sun are shown using tape-like arrows. At an angle β from
the vertical, the Earth’s tilted axis is positioned on the plane y1oz1 at two points during
its rotation at 90 degrees, illustrating its angular momentum vectors H. The graphical
representation of the vectors H, the action of the torques, and the Earth’s motions on
the orbital plane are consistent and informative, enhancing the accompanying written
explanations.

Figure 5. Schematic of the Earth’s motion around the Sun (coordinate axes Σoxyz) with the action of
the inertial torques

The physics of Earth’s gyroscopic torques are explained as follows. The external torque
T turns the Earth’s tilt axis about a vertical axis oz1. The directions of the Earth’s rotation
and its rotation by the action of the external torque coincide but do not combine because
of their different physics. The external torque T turns the Earth at the angle γ around the
axis oz. The vector of the Earth’s torque of the change in angular momentum ∆Hz about
axis o1y1z acts counterclockwise around axis o1x1 and produces the torque of the change in
angular momentum ∆Hx. The vertical component of the vector ∆Hx acts clockwise around
the axis o1z1 as the torque Tz. The magnitude of this torque is nullified when sin β = 0◦.
The horizontal component of the vector ∆Hx, Tx, turns the vector H of the Earth’s axis
counterclockwise around the axis ox, decreases the angle β, and produces the torque that
opposes the torque ∆Hz. The gyroscopic torque Tx continuously decreases the Earth’s
inclined axis in space. Consequently, the plane of the Earth, with its inclined axis, slowly
shifts in space over time, and eventually, its axis will align parallel to the axis of the Sun.

The gyroscopic torques acting on the Earth generate a resultant effect that opposes the
external torque T. The Earth’s gyroscopic torques around the axes were described in steps
1–7 above (Figure 1–5) and Appendix A1 of reference [7]. The Earth’s resulting inertial
torque Tx, which accounts for the effects of centrifugal and Coriolis torques, and the change
in angular momentum, causes a decrease in the angle β of its axis during its orbital motion
around the Sun.

The equation of Earth’s relative motions around the axes in space has the following
expression [7, Chapter 5]:



TK Techforum Journal (ThyssenKrupp Techforum) 20

(Jz + MR2)
dωz

dt
=T − 5

36
π3 Jωeωz sin β − 5

18
π Jωeωz sin β

−
(

5π3 + 5π + 18
18 − 5π

)
Jωeωz sin β, (1)

Jx
dωx

dt
=

5
36

π3 Jωzωx sin β + Jωzωx sin β − 5
18

π Jωeωx sin β, (2)

ωx =

(
5π3 + 5π + 18

18 − 5π

)
ωz. (3)

Transformations of Eq. (1) yield

(Jz + MR2)
dωz

dt
= T −

(
5
36

π3 +
5
18

π +
5π3 + 5π + 18

18 − 5π

)
Jωeωz sin β, (4)

where all parameters are as specified above and in Table 1.
The torques acting around the axis o1z1 reduce the tilt of the Earth’s axis as it orbits the

Sun. This effect generated by the Earth’s gyroscopic forces can be noticeable centuries later.

3. Working Example

The Earth’s climate change depends on its tilted axis, rotation, orbital motion around
the Sun and gyroscopic effects that generate all rotating objects. The influence of gyroscopic
effects on the Earth’s climate is not so strong and can be noticeable centuries later. The
theory of gyroscopic effects allows for calculating when the Earth’s climate is stabilized.
Initial data regarding the Earth’s movements around the Sun for these calculations is
represented in Table 2.

Table 2. The data of the earth motions around the sun

Parameters Dimensions Reference
Mass, M 5.9742 × 1024 kg

\texttthttps://qntm.org/data

Radius, r 6.3781 × 106 m
Angle of inclination to the vertical, β 23.44◦

Speed of the Earth rotation, ωe 7.272202 × 10−5 rad/s
Distance to the sun, R 1.49595 × 1011 m
Orbital velocity, V 29799, 686 m/s
Orbital rotation, ω = V/R 1.992024 × 10−7 rad/s
Angular momentum, H 7.07236 × 1033 kg m2/s
Moment of inertia J = (2/5)Mr2 9.721256 × 1037 kg·m2

The external torque generated by the Earth’s turn around the Sun by the orbital motion
has the following expression [12]:

T = Jε = Jω2 = 9.721256 × 1037 × (1.992024 × 10−7)2 = 3.857548 × 1024 Nm. (5)

Substituting the defined data of Table 1 and Eq. (5) into Eq. (4) yields the following:

[
9.721256 × 1037 + 5.9742 × 1024 ×

(
1.49595 × 1011

)2
]

dωz

dt

= 3.857548 × 1024 −
(

5
36

π3 +
5
18

π +
5π3 + 5π + 18

18 − 5π

)
× 9.721256 × 1037 × 7.272202 × 10−5 × ωz sin 23.44◦. (6)

Simplification of Eq. (6) gives
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5.431691 × 1011 dωz

dt
= 1.567255 × 10−11 − ωz. (7)

Separating variables of Eq. (7) and transforming yield

dωz

1.567255 × 10−11 − ωz
= 1.841047 × 10−12 dt. (8)

The integral forms and transformation present Eq. (8):∫ ωz

0

dωz

1.567255 × 10−11 − ωz
= 1.841047 × 10−12

∫ t

0
dt. (9)

The integrals of Eq. (9) are tabulated and represent the integral∫ dx
a − x

= − ln |a − x|+ C.

Solving integrals brings the following:

ln
(

1.567255 × 10−11 − ωz

)∣∣∣ωz

0
= −1.841047 × 10−12t, (10)

giving rise to the following:

ωz

1.567255 × 10−11 = 1 − e−1.841047×10−12t. (11)

The right component of Eq. (11) has a small value of high order that can be neglected.
Eqs (11) and (3) give the relative angular velocities of the Earth around axes ox and oz

under the action of the external torque T:

ωz = 1.567255 × 10−11 rad/s = 8.979711◦ × 10−10 /s. (12)

The Earth’s relative angular velocity around the axis oz Eq. (12) is less than the velocity
of the orbital rotation around the Sun ω = 1.992024 × 10−7 rad/s.

k =
ω

ωz
=

1.992024 × 10−7

1.567255 × 10−11 = 1.271027 × 104.

The actual Earth’s angular velocity around the axis oz is

ωze =
ωz

k
=

1.567255 × 10−11

1.271027 × 104 = 1.233061 × 10−15 rad/s,

because of the Earth’s rotation about the Sun. The angular velocity of the Earth around the
axis ox is

ωxe =

(
5π3 + 5π + 18

18 − 5π

)
ωze =

(
5π3 + 5π + 18

18 − 5π

)
× 1.233061 × 10−15

=1.015373 × 10−13 rad/s. (13)

The direction of the Earth’s angular velocity around the axis ox Eq. (13) is in a
counterclockwise (Figure 2). The time required for the Earth’s axis to turn and become
parallel to the Sun’s axis is calculated using Eq. (13) by the following expression:

t =
β

ωxe
=

23.44◦

(180◦/π)
× 1

1.015373 × 10−13 = 4029112224448 s = 127762.310 years. (14)
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The result calculated by Eq. (14) relates only to the effects of gyroscopic torques and
does not include the influence of other factors such as geological, gravitational, magnetic,
and solar radiation. The gyroscopic effects change the tilt of the Earth’s rotating axis slowly
in space as shown by calculating Eqs. (1)–(4). Over time, this effect will diminish when the
Earth’s axis becomes perpendicular to the orbital plane.

4. Results and Discussion

A study of the gyroscopic effect of the Earth’s rotating axis during its orbital motion
around the Sun shows slow changes in its inclination. The model depicts the Earth as a
perfect solid sphere with a circular orbital trajectory. The geometry of the Earth and its
orbital motion are represented by average values, which serve as the foundation for the
calculations. A more accurate result would require an integration of all factors, resulting in
a complex mathematical model. The inertial torque generated by the Earth’s movement
around the Sun causes the planet to rotate in synchrony with its orbit in addition to its
own rotation. This torque induces gyroscopic torques that act on the Earth and change
its inclined axis in space. The analytical solution, the calculated data, and the graphical
representations show that the Earth’s axis experiences a displacement toward the vertical
position during its orbital motion. The Earth’s axis tilt is decreased, and the climate of the
hemispheres will stabilise with time.

5. Conclusion

The challenges associated with the gyroscopic effects caused by the rotation of planets
in the universe are intriguing aspects of astrophysics. Researchers have attempted to
address these effects; however, their simplified models have not been widely adopted in
publications on planetary motion. Recent studies on the theory of gyroscopic effects in
rotating objects have introduced a new scientific perspective and provided a fresh analytical
approach to studying planetary movements. The physics behind the gyroscopic effects
of rotating planets can be explained using established principles of classical mechanics.
Mathematical models that describe the inertial torques acting on the rotating Earth, which
has an axis tilted relative to its orbital plane around the Sun, help clarify the physics of
climate change. Additionally, the mathematical model for the Earth’s orbital motion enables
predictions of climate changes and holds applied potential for astrophysics.
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