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Abstract: This study presents necessary conditions for the existence and sufficient conditions for
the stability or instability of the static meniscus (liquid bridge) appearing in the cylindrical bar
single crystal growth from the melt, of predetermined sizes, by using the dewetted Bridgman growth
method. The cases when the wetting angle θc and the growth angle αe verify the inequality θc + αe < π

or θc + αe > π are treated separately. Experimentally, only static meniscus (liquid bridge) which
verifies the necessary condition of existence and the sufficient conditions of stability can be created;
static meniscus (liquid bridge) which does not verify both of these conditions, can exist only in
computation because in reality they collapse during experimental creation. The results of this study is
significant for the cylindrical bar single crystal growth from the melt, of predetermined sizes, by using
the dewetted Bridgman growth method, using prior given specific equipment. That is because the
obtained inequalities represent limits for what can and cannot be achieved experimentally. Numerical
illustrations are given for GaSb lasser cylindrical bar, and InSb lasser cylindrical bar cylindrical bar.

Keywords: existence, static stability, meniscus, cylindrical bar growth, dewetted Bridgman growth

1. Introduction

According to [1] “Dewetting” refers to a phenomenon that has occurred spontaneously
during many experiments of Bridgman solidification of semiconductors in space (see re-
views [2,3]). It also refers to a process developed for crystal growth on Earth (see review
in [4]). In both cases, the crystal is grown without interaction with the crucible, which
considerably improves the structural quality of the material: less residual stresses, dis-
locations, spurious nucleation or twins. The origin of the gap between the crystal and
the crucible comes from a small liquid meniscus at the level of the solid–liquid interface
[5]. While the phenomenon is spontaneous under microgravity conditions, because of the
lack of hydrostatic pressure, it has been adapted on Earth by applying on the liquid a gas
pressure difference, pn

h − pg
c , of the order of the hydrostatic pressure, in order to create and

maintain the meniscus. For the geometry of the growth system and the main dimensions,
angles, temperatures and pressures of interest in the process see [1]. Many experiments
under microgravity have shown that the gap, which is typically smaller than 100 µm, is
remarkably constant for several hours of growth. Similarly, dewetted crystals obtained on
Earth demonstrate that, under given conditions (essentially a bad wetting of the liquid on
the crucible), the crystal radius stays spontaneously constant, while it is almost impossible
to get a dewetted crystal for other configurations [6,7]. It then appears that the process is
extremely stable (the grown crystal does not reattach to the crucible wall) in certain cases,
while it shows high instability under others conditions. The thin gap thickness is directly
linked to the meniscus shape and position which depend on capillary forces, hydrostatic
and hydrodynamic pressures and heat transfer, all of them likely to fluctuate with time.
Therefore, it is necessary, in order to master the growth process, to perform a dynamic
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stability analysis. Several mathematical descriptions of the Bridgman process have been
published, all based on classical partial differential physical Eqs. (Young–Laplace, heat
transfer, Navier–Stokes). Depending on the level of simplification, they extend from sim-
plified autonomous nonlinear systems of differential equations [8] to numerical solutions
of discretized partial differential equations [9,10]. On this basis, several papers have been
devoted to the study of the stability of dewetting, all based on Lyapunov’s theory as usually
applied to crystal growth [8]: simple approaches considering only the capillary effect [12,13]
as well as more thorough analyses taking into account coupling between capillarity, heat
transfer, and pressure fluctuations [13,14]. However, such analyses consider the stability on
an infinite time period and do not allow studying the time scale of perturbation recovery,
nor the acceptable amplitude of the perturbations. In other words, there are cases where
the system may be stable in the sense of Lyapunov, but it is useless in practice because the
region of stability is too small or the recovery time is too long. On the contrary, the system
may be unstable in the sense of Lyapunov, but it may oscillate sufficiently close to a state
for which the performance is acceptable in practice. Practical stability is a mathematical
concept allowing the analysis of these more complicated cases. Compared to Lyapunov’s
stability (which concerns the stability of a specified solution of a single differential equation
and its behaviour over an unbounded time interval), the practical stability of the system
over a bounded time interval reflects better the reality because, in practice, the solidification
takes place in a bounded time interval, and the interest is the behaviour along the whole
process.

The present study deals with one other type of stability different from the above
mentioned dynamic stability of the crystallization process. It concerns the stability or
instability of an existing static meniscus i.e. the minimum of the free energy of the melt
column i.e. that of the functional I(z) defined by:

I(z) =
∫ ra

rc
r
[
1 +

√
1 + (z′)2 − 1

2
× p × g × z2 + p × z

]
r dr; z(rc) = −h, z(ra) = 0. (1)

Figure 1. Schematic dewetted Bridgman crystal growth system

Here, γ is the melt surface tension; z = z(r) describes the meridian curve of the
meniscus as a function of the radial coordinate r in an axis symmetric reference frame
which Oz axis is directed vertically upwards (Figure 1); ρ denotes the melt density; g is
the gravity acceleration, p = ρ × g × Hm − (pg

c − pg
h), denotes a pressure difference; Hm

denotes the melt column height; Ha is the ampule height; pg
c is the cold gas pressure; pg

h is
the hot gas pressure; rc is the crystal radius; ra is the ampule radius; h > 0 is the meniscus
height, ra − rc = ε denotes the size of the gap between the crystal and ampule walls, θc is
the wetting angle and αe is the growth angle.

For statically stable meniscus, indispensable (necessary) first order conditions and also
second order sufficient conditions for the minimum of functional (1) should be satisfied.

The first order necessary condition is the Euler equation IS,
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d
dr

(
∂F
∂z′

)
−

(
∂F
∂z

)
= 0, (2)

where
F(r, z, z′) = {γ × [1 +

√
1 + (z′)2 + 1

2 × ρ × g × z2 + p × z]× r, (3)

which leads to the Young–Laplace capillary equation:

z′′ =
p − ρg × z

γ
×

√
(1 + z′2)3 − 1

r
× [1 + z′2]× z′ for 0 < rc ≤ r ≤ ra. (4)

As the Young–Laplace equation in hydrostatic approximation (4) is a second order
differential equation formulation of boundary conditions requires assignment of two
boundary conditions; one of the melt crystal interface, the second one at the melt and
ampule wall interface. These conditions are: solution z = z(r) of Eq. (4) satisfy the
following boundary conditions:

z′(rc) = tan
(

π
2 − αe

)
, z′(ra) = tan(θc − π

2 ), z(rc) = −h, z(ra) = 0,

and

z(r) is strictly monotone on [rc, ra]. (5)

The second order sufficient conditions for the minimum of functional (1) are the
Legendre condition and the Jacobi condition [15].

The Legendre condition is
∂2F

∂z′∂z′
> 0. (6)

The Jacoby condition concerns the so-called Jacoby equation:[
∂2F

∂z ∂z
− d

dr

(
∂2F

∂z ∂z′

)]
× η − d

dr

[
∂2F

∂z′ ∂z′
× η′

]
= 0. (7)

Jacobi requirement of stability is that the solution of Eq. (7) which verifies the initial
condition η(rc) = 0 and η′(ra) = 1 vanishes at most once on the interval [rc, ra]. Jacobi
requirement of instability is that the solution of Eq. (7) which verifies the initial condition
η(ra) = 0 and η′(ra) = 1 vanishes at least twice on the interval [rc, ra]. These conditions
are sufficient conditions and can be investigated researching Sturm type upper bound or
Sturm type lower bond equations for Eq. (7).

2. Existence, stability or instability of a convex meniscus

A meniscus is convex if z′′(r) > 0 for rc ≤ r ≤ ra. Remark first that in case of a convex
meniscus the function z′(r) is increasing. In particular this means that z′(rc) < z′(ra).
Hence tan

(
π
2 − αe

)
< tan(θc − π

2 ), π − αe < θc − π
2 . Therefore π < αe + θc.

Using the Young–Laplace capillary Eqs. (4), conditions (5) and condition z′′(r) > 0 for
rc ≤ r ≤ ra, the following result can be established:

Statement 2.1. If π < αe + θc, then a necessary condition for the existence of a function
z(r) having the properties (4), (5) and z′′(r) > 0 for rc ≤ r ≤ ra is that the pressure
difference p = ρ × g × Hm − (pg

c − pg
h), verifies:

γ × αe + θc − π

ra − rc
× sin θc − ρ × g × (ra − rc)× tan

(
θc − π

2
)
+

γ

ra
× cos αe

≤ p ≤ γ × αe + θc − π

ra − rc
× sin αe −

γ

rc
× cos θc. (8)
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Therefore, if the pressure difference p = ρgHm − (pg
c − pg

h) a convex static meniscus

exists, then the pressure difference belongs to the interval
[

Lleft ≤ p ≤ Lright

]
, where

Lleft = γ
αe + θc − π

ra − rc
× sin θc − ρg × (ra − rc)× tan(θc − π

2 ) +
γ

ra
cos αe, (9)

Lright = γ
αe + θc − π

ra − rc
× sin αe −

γ

rc
cos θc. (10)

In terms of the gap size ε = ra − rc, equalities (10) and (11) can be written in the form:

Lleft(ε) = γ
αe + θc − π

ε
× sin θc − ρg × ε × tan(θc − π

2 ) +
γ

ra
cos αe, (11)

Lright(ε) = γ
αe + θc − π

ε
× sin αe −

γ

ra − ε
cos θc. (12)

For,

p < Lleft(ε), and p > Lright(ε), (13)

convex static meniscus like in Figure 1 with gap size ε does not exist.
If p = ρgHm − (pg

c − pg
h) is in the range defined by (14), convex static meniscus cannot

be obtained experimentally because it collapse during the experiment.
For the existence of convex static meniscus, beside the equalities (11), (12), the next

theoretical result is useful.
Statement 2.2. [16] If π < αe + θc, and 0 < ε′ < ra, then a sufficient condition for the

existence of a number ε verifying 0 < ε < ε′, and the existence of a function z(r) having the
properties (5) and z′′(r) > 0 for r ∈ [rc, ra] (i.e., convex meridian curve) is, that the pressure
difference p = ρgHm − (pg

c − pg
h) verify:

p > γ × αe + θc − π

ε′
× sin αe −

γ

ra − ε′
× cos θc = Lright(ε

′). (14)

Numerical computations were performed for the determination of a convex GaSb
static meniscus. A GaSb (Gallium Antimonide) laser is a type of semiconductor laser that
uses a GaSb-based material as its active region. These lasers are particularly useful for
emitting light in the mid-infrared region of the spectrum, around 2 µm, which is relevant
for various applications like medical diagnostics, environmental sensing, and free-space
optical communication.

The following numerical data were considered: ra = 5.5 × 10−3 [m], rc = 5.485 ×
10−3 [m], ε = 1.5 × 10−5 [m], θc = 2.791 [rad], αe = 0.540 [rad], ρ = 6.060 × 103

[
kg
m3

]
,

γ = 4.5 × 10−1
[

N
m

]
, g = 9.81

[
m
s2

]
, Hm = 60 × 10−3 [m].

Computation shows that for the considered numerical data, equalities (9), (10) become:
Lleft(ε) = −907.882076 [Pa], Lright(ε) = −48.153047 [Pa]. Therefore, in this case the
pressure difference p = ρ × g × Hm − (pg

c − pg
h) has to verify:

−907.882076 < ρgHm − (pg
c − pg

h) < −48.153047.

For identifying a convex static GaSb meniscus Statement 2.1 with ε′ = 1.4862240629 ×
10−3 [m] was used. It was found that: Lright(ε

′) = 134.7790490 [Pa] and for ε = 1.5 ×
10−5 [m], p = 1345.1652 [Pa] a GaSb meniscus having convex meridian curve is obtained.
The gap size of meniscus is ε = 1.5 × 10−5 [m] and the meniscus height is h = 3.35 ×
10−5 [m]. This result can be obtained by solving the following initial value problem:

dz
dr

= tan θ,
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dθ

dr
=

−6.060 × 103 × 9.81 × z + 1345.1652
4.5 × 10−1 × 1

cos θ
− 1

r
× tan θ,

z(ra) = 0, θ(ra) = 2.791 − π

2
.

GaSb laser is shown in Figure 2. The shape of the obtained GaSb meniscus and the variation
of θ are represented in the next Figures 3 and 4.

Figure 2. GaSb laser

Figure 3. GaSb computed meniscus shape (left)

Figure 4. θ versus r (right)

Note that the above GaSb static meniscus was obtained by computation. This does
not imply that it can be realized experimentally. For the practical creation of the above
meniscus it is necessary to show that in this case the second order sufficient conditions of
stability are verified.

The Legendre condition (6):

∂2F
∂z′2

> 0,

in this case becomes



TK Techforum Journal (ThyssenKrupp Techforum) 29

∂2F
∂z′2

=
γr

(1 + (z′)2)3/2 > 0. (15)

Therefore, the Legendre condition is verified.
The Jacoby Eq. (7):[

∂2F
∂z′∂z′

− d
dr

(
∂2F

∂z∂z′

)]
η − d

dr

[
∂2F

∂z′∂z′
× η′

]
= 0,

in this case becomes

d
dr

[
γr

(1 + (z′)2)3/2 × η′
]
− gρ × r × η = 0. (16)

Jacobi requirement of stability condition is that the solution of Eq. (16) which verifies
the initial condition η(ra) = 0 and η′(ra) = 1 vanishes at most once on the interval [rc, ra].

In order to find a sufficient condition for Jacobi requirement, according to [10], it is
sufficient to find a Sturm type upper bound for the Eq. (16).

Remark that for the coefficients of (16) in case of a GaSb static convex meniscus the
following inequalities hold:

γr
(1 + (z′)2)3/2 > rc × γ ×

(
cos(θc − π

2 )
)3 and − gρ × r < −gρ × rc. (17)

Hence

(µ′ × rc × γ ×
(
cos(θc − π

2 )
)3
)′ − gρ × rc × µ = 0 or µ′′ =

gρ

γ ×
(
cos(θc − π

2 )
)3 , (18)

is a Sturm–type upper bound for (16). Remark that an arbitrary solution of (18) is given by

µ(r) = A × sin(ω × r + φ), (19)

where A and φ are real constants and

ω2 =
gρ

γ × (sin θc)3 . (20)

The half period of a non-zero solution µ(r) defined by (19) is given by

π

ω
= π ×

√
γ × (sin θc)3

gρ
. (21)

If the half period given by (21) verifies inequality

π

ω
= π ×

√
γ × (sin θc)3

gρ
> ra − rc = ε, (22)

then the function µ(r) defined by (19) vanishes at most once on the interval [rc, ra].
Hence, according to [10], the solution of Jacobi Eq. (16) which verifies η(ra) = 0 and

η′(ra) = 1 has only one zero on the interval [rc, ra]. Therefore the stability condition of
Jacobi is verified. In other words the computed static meniscus is stable and can be realized
experimentally. Note that, because inequality (22) is a sufficient condition, the inequality

π ×

√
γ × (sin θc)3

gρ
< ε, (23)

does not imply that a computed convex static meniscus is unstable.
In the considered numerical case we have
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π ×

√
γ(sin θc)3

gρ
= 0.00506547181 > ε = 1.5 × 10−5.

Therefore the GaSb convex static meniscus obtained by computation is stable. This
means that it can be realized experimentally.

Assume now that by computation a static convex GaSb meniscus was obtained. Jacobi
requirement of instability of the computed static meniscus is that the solution of Eq. (7)
which verifies the initial condition η(ra) = 0 and η′(ra) = 1 vanishes at least twice on the
interval [rc, ra]. Therefore, the instability condition of Jacobi is verified. This condition is a
sufficient condition and can be investigated researching Sturm type lower bound for Eq.
(16).

Remark that for the coefficients of (16) the following inequalities hold:

γr
(1 + (z′)2)3/2 < ra × γ × (sin(αe))

3, −gρ × r > −gρ × ra. (24)

Hence

(µ′ × ra × γ × (sin(αe))
3)′ − gρ × raµ = 0 or µ′′ =

gρ

γ(sin αe)3 , (25)

is a Sturm–type upper bound for (16). Remark that an arbitrary solution of (25) is given by

µ(r) = A × sin(ωr + φ), (26)

where A and φ are real constants and

ω2 =
gρ

γ(sin αe)3 . (27)

The period of a non-zero solution µ(r) defined by (25) is given by

2π

ω
= 2π ×

√
γ(sin αe)3

gρ
. (28)

If the period of the function µ(r) verifies inequality:

2π ×

√
γ(sin αe)3

gρ
> ra − rc = ε or ε > 0.01239522211, (29)

then the function µ(r) vanishes at least twice on the interval [rc, ra]. It follows according
to [10] that the solution of the Jacobi Eq. (2.8) which verifies η(ra) = 0 and η′(ra) = 1
vanishes at least twice on the interval [rc, ra]. Therefore, the instability condition of Jacobi
is verified. In other words the computed static meniscus is unstable and can’t be realized
experimentally.

For a GaSb static convex meniscus the sufficient condition of stability is

ε < 0.00506547181 [m],

and the sufficient condition of instability is

ε > 0.01239522211 [m].

It follows that we cannot give an answer to the problem of stability or instability of
the computed GaSb static convex meniscus for

0.00506547181 [m] < ε < 0.01239522211 [m], (30)
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Despite this shortcoming the obtained inequalities indicate how we should choose ra
and rc if we want to decide on the stability or instability of the static meniscus obtained
by computation. More precisely: instability of the computed convex static GaSb meniscus
appear when

ra > 0.01239522211 [m], (31)

and
rc < ra − 0.01239522211. (32)

3. Existence, stability or instability of a concave meniscus

A meniscus is concave if z′′(r) < 0 for rc ≤ r ≤ ra. Remark first that in case of a
concave meniscus the function z′(r) is decreasing. In particular this means that z′(rc) >
z′(ra). Hence

tan
(π

2
− αe

)
> tan(θc − π

2 ), π − αe > θc − π
2 .

Therefore π > αe + θc.
Using the Young–Laplace capillary Eqs. (4), conditions (5) and condition z′′(r) < 0 for

rc ≤ r ≤ ra, the following result can be established:

γ× (αe + θc − π)

ε
sin θc − ρg × ε × tan

(
π
2 − αe

)
− γ

ra
cos θc

≤ p ≤ γ × (αe + θc − π)

ε
sin αe +

γ

ra − ε
cos αe, (33)

where ε = ra − rc.
Therefore in case of the existence of a concave static meniscus the values of the pressure

difference p = ρgHm − (pg
c − pg

h), have to be researched in the interval [Lleft(ε), Lright(ε)],
where:

Lleft(ε) = γ
αe + θc − π

ε
× sin θc − ρg × ε × tan

(
π
2 − αe

)
− γ

ra
cos θc, (34)

Lright(ε) = γ
αe + θc − π

ε
× sin αe +

γ

ra − ε
cos αe. (35)

For

p = ρgHm − (pg
c − pg

h) < Lleft(ε), p = ρgHm − (pg
c − pg

h) > Lright(ε), (36)

a concave static meniscus for which the gap size ε does not exist.
In other words if p = ρgHm − (pg

c − pg
h) is in the range defined by (36) concave static

meniscus with gap size ε cannot be obtained experimentally because it collapse during the
experiment.

Numerical computations were performed for the determination of a convex InSb static
meniscus. A GaSb (Gallium Antimonide) laser is a type of semiconductor laser that uses a
GaSb-based material as its active region. InSb, or indium antimonide cylindrical bars are
nanostructured materials promising applications in various electronic and optoelectronic
devices. They are, elongated structures made of the compound semiconductor indium
antimonide. InSb is known for its high electron mobility, narrow energy bandgap, and low
effective mass, making it a suitable material for infrared detectors, high-speed devices, and
magnetic sensors. Indium Antimonide cylindrical bar laser based biometric identification
and body temperature detection is shown in Figure 5.



TK Techforum Journal (ThyssenKrupp Techforum) 32

The following numerical data were considered: ra = 5.5 × 10−3[m], rc = 5.485 ×
10−3[m], ε = 1.5× 10−5[m], θc = 1.953[rad], αe = 0.436[rad], ρ = 6.582× 103[kg/m3], γ =
4.2 × 10−1[N/m], g = 9.81[m/s2], Hm = 60 × 10−3[m].

Figure 5. Indium Antimonide cylindrical bar laser based biometric identification and body tempera-
ture detection

Computation shows that for the considered numerical data, equalities (34), (35) be-
come: Lleft(ε) = −19525.69897 [Pa], Lright(ε) = −8968.72508 [Pa]. Therefore, in this case
the pressure difference p = ρgHm − (pg

c − pg
h), has to verify:

−19525.69897 [Pa] < p = ρgHm − (pg
c − pg

h) < −8968.72508 [Pa].

For the existence of convex static meniscus beside the equalities (34), (35) the next
theoretical result is useful.

Statement 3.1. [16]
If π > αe + θc, and 0 < ε < ε′, then a sufficient condition for the existence of a

number ε verifying 0 < ε < ε′, and the existence of a function z(r) having the properties (5)
and z′′(r) < 0 for r ∈ [rc, ra] (i.e. concave meridian curve) is, that the pressure difference
p = ρgHm − (pg

c − pg
h) verify:

p < γ
αe + θc − π

ε′
sin θc − ρgε′ tan

(
π
2 − αe

)
− γ

ra
cos θc = Lleft(ε

′). (37)

For identifying a concave static InSb meniscus Statement 3.1 with ε′ = 1.4862240629 ×
10−3[m] was used. It was found that: Lright(ε

′) = −374.8277513 [Pa]. and for ε = 1.5 ×
10−5[m], p = −6500[Pa] an In Sb static meniscus having concave meridian curve is
obtained. The gap size of meniscus is ε = 1.5 × 10−5[m] and the meniscus height is
h = 1 × 10−5[m]. This result can be obtained by solving the following initial value problem:

dz
dr

= tan θ,

dθ

dr
=

−6.582 × 103 × 9.81 × z − 6500
4.2 × 10−1 × 1

cos θ
− 1

r
× tan θ. (38)

z(ra) = 0, θ(ra) = 1.953 − π

2
.

For the gap size ε = 1.5 × 10−5[m], the value of the pressure differences pg
c − pg

h is

(pg
c − pg

h) = ρgHm − p = 10374.16520[Pa].

The shape of the obtained InSb meniscus and the variation of θ are represented in the
next Figures 6 and 7.
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Figure 6. InSb meniscus shape for ε = 1.5 × 10−5[m]

Figure 7. θ versus r

Note that the above InSb static meniscus was obtained by computation. This does
not imply that it can be realized experimentally. For the practical creation of the above
meniscus it is necessary to show that in this case the second order sufficient conditions of
stability are verified.

The Legendre condition (6) ∂2F
∂z′2 > 0, in this case become

∂2F
∂z′2

=
γr

(1 + (z′)2)3/2 > 0. (39)

Therefore, the Legendre condition is verified.
The Jacoby Eq. (7)

[
∂2F

∂z′∂z′ −
d
dr

(
∂2F

∂z∂z′

)]
η − d

dr

[
∂2F

∂z′∂z′ η
′
]
= 0, in this case become

d
dr

[
γr

(1 + (z′)2)3/2 × η′
]
− gρ × r × η = 0. (40)

Jacobi requirement of stability condition is that the solution of Eq. (40) which verifies
the initial condition η(ra) = 0 and η′(ra) = 1 vanishes at most once on the interval [rc, ra].

In order to find a sufficient condition for Jacobi requirement, according to [10], it is
sufficient to find a Sturm type upper bound for the Eq. (40).

Remark that for the coefficients of (40) the following inequalities hold:

γr
(1 + (z′)2)3/2 > rc × γ × (cos(π

2 − αe))
3, −gρ × r < −gρ × rc. (41)

Hence

(µ′ × rc × γ × (cos(π
2 − αe))

3)′ − gρ × rcµ = 0 or µ′′ =
gρ

γ(sin αe)3 , (42)

is a Sturm–type upper bound for (40). Remark that an arbitrary solution of (42) is given by



TK Techforum Journal (ThyssenKrupp Techforum) 34

µ(r) = A sin(ωr + φ), (43)

where A and φ are real constants and

ω2 =
gρ

γ(sin αe)3 . (44)

The half period of a non-zero solution µ(r) defined by (43) is given by

π

ω
= π

√
γ(sin αe)3

gρ
. (45)

If the half period given by (45) verifies inequality

π

ω
= π

√
γ(sin αe)3

gρ
< ra − rc = ε, (46)

then the function µ(r) defined by (43) vanishes at most once on the interval [rc, ra].
Hence, according to [10], the solution of Jacobi Eq. (40) which verifies η(ra) = 0 and

η′(ra) = 1 has only one zero on the interval [rc, ra]. Therefore the stability condition of
Jacobi is verified. In other words the computed static meniscus is stable and can be realized
experimentally. Note that, because inequality (46) is a sufficient condition, the inequality

π

√
γ(sin αe)3

gρ
> ε, (47)

does not imply that a computed convex static meniscus is unstable.

In the considered numerical case we have pi
√

γ(sin αe)3

gρ = 0.005206913804 > ε =

1.5 × 10−5. Therefore the InSb convex static meniscus obtained by computation is stable.
This means that it can be realized experimentally.

Assume now that by computation a static convex meniscus was obtained. Jacobi
requirement of instability of the computed static meniscus is that the solution of Eq. (7)
which verifies the initial condition η(ra) = 0 and η′(ra) = 1 vanishes at least twice on the
interval [rc, ra]. This condition is a sufficient condition and can be investigated researching
Sturm type lower bound for Eq. (40).

Remark that for the coefficients of (40) the following inequalities hold:

γr
(1 + (z′)2)3/2 ≤ raγ × (cos(θc − π

2 ))
3, −gρ × r > −gρ × ra. (48)

Hence

(µ′ × raγ × (sin(θc)
3))′ − gρ × raµ = 0 or µ′′ =

gρ

γ(sin θc)3 , (49)

is a Sturm–type upper bound for (40). Remark that an arbitrary solution of (49) is given by

µ(r) = A sin(ωr + φ), (50)

where A and φ are real constants and

ω2 =
gρ

γ(sin θc)3 . (51)

The period of a non-zero solution µ(r) defined by (49) is given by

2π

ω
= 2π

√
γ(sin θc)3

gρ
. (52)
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If the period of the function µ(r) verifies inequality:

2π

√
γ(sin θc)3

gρ
< ra − rc = ε, (53)

then the function µ(r) vanishes at least twice on the interval [rc, ra]. Therefore according to
[10] the solution of the Jacobi Eq. (3.8) which verifies η(ra) = 0 and η′(ra) = 1 vanish at
least twice on the interval [rc, ra]. Therefore, the instability condition of Jacobi is verified. In
other words the computed static meniscus is unstable and can’t be realized experimentally.

In the considered numerical case for an InSb static convex meniscus the sufficient
condition of stability is

ε < 0.005206913804 [m],

and the sufficient condition of instability is

ε > 0.01543578729 [m].

It follows that we cannot give an answer to the problem of stability or instability of
the considered InSb static concave meniscus for

0.005206913804 [m] < ε < 0.01543578729 [m]. (54)

Despite this shortcoming the obtained inequalities indicate how we should choose ra
and rc if we want to decide on the stability or instability of the static meniscus obtained by
computation. More precisely:

instability of a convex static InSb meniscus appear when

ra > 0.01543578729 [m], (55)

and

rc < ra − 0.01543578729 [m]. (56)

4. Results

Necessary conditions for the existence and sufficient conditions for the stability or
instability of the static meniscus (liquid bridge) appearing in the cylindrical bar single
crystal growth from the melt, of predetermined sizes, by using the dewetted Bridgman
growth method, are presented. Theoretical results are illustrated numerically in case of
GaSb laser cylindrical bar single crystal and InSb laser single crystal growth by dewetted
Bridgman method.

5. Comments and Conclusions

The main novelty in this article consists in the obtained inequalities. These represent
limits for what can and cannot be achieved. Experimentally, only stable static liquid bridges
can be created if they exist theoretically. Unstable static liquid bridges could exist just in
computation; in reality, they collapse; therefore, they are not appropriate for crystal growth.
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