((T@;::Ti%;

Research on Tool Wear Monitoring Technology in Precision
Machining with Numerical Control Machine Tools

Lili Liu

Citation: Lili Liu. 2025. Research on
Tool Wear Monitoring Technology in
Precision Machining with Numerical
Control Machine Tools. TK Techforum
Journal (ThyssenKrupp Techforum)
2025(3): 37-51.

https:/ /doi.org/10.71448 /tk202534

Received: 29-March-2025
Revised: 06-July-2025
Accepted: 12-August-2025
Published: 23-September-2025

Copyright: © 2025 by the authors.
Licensee TK Techforum Journal
(ThyssenKrupp Techforum).  This
article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /

40/).

1 School of Engineering, Wuhan University, Wuhan, Hubei, 430000, China
*  Correspondence: lliin_liu11@126.com

Abstract: This study provides a comprehensive analysis of tool wear in precision machining on CNC
machine tools, introduces relevant theories on tool wear, and collects two milling experiment datasets
from PHM and NASA. Based on deep residual networks and attention mechanisms, an improved
deep residual contraction network tool wear monitoring model is designed to map tool wear features
into a high-dimensional space, thereby enhancing the model’s recognition performance. Experiments
demonstrate the feasibility of the proposed model in tool wear monitoring. The improved model
achieves an accuracy rate of approximately 96% on both the PHM and NASA datasets during
training, with loss values fluctuating around 0.12 and 0.17, respectively. Evaluation parameters
such as recognition accuracy and sensitivity under different wear conditions are significantly higher
than those of the comparison methods. Additionally, the model can accurately predict rear face
wear conditions, with a maximum absolute recognition error of only 8.5 um, significantly lower
than the 20.7 ym of the comparison model. The coefficient of determination exceeds 97% on both
datasets, indicating good generalization capability. Under different sensor signals, this model can
also accurately identify tool wear states, with the highest recognition accuracy for initial and severe
wear stages.
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1. Introduction

With the continuous advancement of manufacturing technology, CNC machine tools
have become indispensable equipment in modern manufacturing [1]. During CNC turning
processes, tool wear is an inevitable phenomenon. Tools gradually degrade and wear due
to friction with the workpiece surface, leading to reduced cutting efficiency and degraded
processing quality [2—4]. Additionally, tool wear not only increases material and energy
consumption but may also cause production interruptions and additional maintenance
costs [5,6]. Therefore, as the core processing component of CNC machine tools, precise
monitoring of tool wear status not only ensures the safe operation of machining centers
and improves production efficiency but also enhances the quality of processed parts [7—
9]. If tool wear is excessive or not detected in a timely manner, it can lead to reduced
surface quality of the workpiece, decreased processing accuracy, and even production
accidents, resulting in economic losses [10-12]. Traditional tool wear monitoring methods,
such as relying on the operator’s experience or specialized instruments for measurement,
are not only time-consuming and labor-intensive but often fail to meet the demands of
high-quality and efficient processing [13,14]. Methods relying on experience have inherent
limitations due to their lag and subjectivity, which can lead to inconsistent judgments due
to individual differences, thereby affecting the accuracy of tool wear monitoring [15,16].
Direct monitoring methods using specialized instruments, on the other hand, require
interrupting the production process, leading to reduced production efficiency [17]. In this
context, the limitations of traditional monitoring methods become particularly evident.
With the development of smart manufacturing, there is an increasing demand for more
efficient and intelligent tool wear monitoring methods. A method capable of continuously
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and online monitoring tool status is needed to ensure the continuity of machining and the
quality of parts [18-21].

Initially, scholars proposed tool monitoring methods based on physical models, which
rely on analyzing tool wear mechanisms and describing tool wear processes through
physical relationship models. For example, Li [22] found that tool wear results from contact
and relative sliding between the cutting tool and the chip, and thus employed the finite
element method to explore the evolution of tool wear and predict tool life. Ramirez et al.
[23] designed a finite element analysis method for tool wear based on dimensional analysis
and metal cutting, establishing a numerical model of cutting to enable prediction of tool
surface pitting wear based on local parameter variables. Nooraie et al. [24] focused on
the geometric shape of worn tools and changes in the inclination angle of the wear region,
combining finite element simulation with response surface methods to construct a wear
rate equation, achieving effective tool wear condition monitoring. Han et al. [25] found
that metal cutting is often accompanied by temperature changes. They proposed using
thermal radiation spectroscopy to measure tool temperature in real-time during cutting and
developed a tool wear state identification model based on cutting temperature, which holds
significant application potential in CNC machining. Han et al. [26] utilized a fiber-optic
dual-color high-temperature meter to obtain real-time temperature data of the cutting edge
during turning and established a mapping model between temperature changes and tool
wear. However, tool monitoring methods based on physical models only consider the
dominant factors related to tool wear, making it difficult to establish accurate physical
models and resulting in large prediction errors. In addition, environmental interference
and individual differences between tools and workpieces also reduce the accuracy of tool
monitoring methods based on physical models.

With the development of artificial intelligence technology, data-driven tool wear moni-
toring methods based on machine learning have also attracted the attention of researchers.
Cheng et al. [27] developed a novel tool condition prediction model based on feature nor-
malization, attention mechanisms, and deep learning algorithms, enabling short-term and
long-term predictions of tool wear states under different cutting parameter combinations.
Munaro et al. [28] investigated the application of artificial intelligence technology in tool
wear monitoring, proposing and validating the feasibility of an artificial intelligence system
predicting tool wear based on tool behavior. Li et al. [29] utilized extended principal
component analysis to process and analyze multi-channel audio signals during machine
tool processing, constructing an intelligent classification model capable of distinguishing
tool wear states at different stages. Gouarir et al. [30] introduced an adaptive control (AC)
system integrating machine learning models with force sensor data feedback, which can ac-
curately determine tool wear states and propose processing decisions to extend tool life. de
Farias et al. [31] found that combining machine learning methods with data-driven methods
significantly improves the prediction accuracy of tool wear states. They proposed applying
optimal linear associative memory neural networks and self-organizing deep learning
models to industrial machine tool processing, providing valuable recommendations for
tool replacement and maintenance. Although data-driven tool wear monitoring methods
can accurately assess tool health status, relying solely on feature extraction methods to
determine tool status lacks generalizability of results.

Tool status monitoring methods based on data and physics (mechanism) hybrid mod-
els combine the advantages of physics-driven models and data-driven models to achieve
monitoring models with higher monitoring accuracy and robustness. Zhang et al. [32]
considered the inaccuracy of physics-based tool wear models in complex machining envi-
ronments and proposed establishing a deep mapping relationship between signal data and
tool wear to achieve accurate monitoring of tool wear status. Goodall et al. [33] evaluated
the power consumption of CNC machines and related parameters of tool milling, and after
extensive repetitive testing, ultimately developed a cyber-physical system that accurately
reflects tool condition monitoring information. Yuan et al. [34] applied a model-driven
cyber-physical system based on the Extended Kalman Filter (EKF) method to machine
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tool condition monitoring, overcoming the limitations of traditional physical models by
calibrating the constructed empirical model using online measurement data. Hanachi et
al. [35] proposed using regularized particle filtering technology to perform numerical
inference on monitoring data based on physical principles and sensors, thereby updating
tool wear state predictions in CNC machine tools and significantly reducing monitoring
result errors. Zhu et al. [36] established a physics-based hidden Markov model (PI-HMM),
which can constrain the division of hidden states on one hand and incorporate expanded
training datasets into the output model on the other, thereby effectively improving the
recognition accuracy of tool wear monitoring. Wang et al. [37] used particle filter tech-
nology to fuse the results of physical model-based and data-driven tool wear condition
monitoring, achieving higher accuracy and better physical consistency compared to a
single model. Ma et al. [38] proposed a hybrid-driven probabilistic state space model to
improve the accuracy and robustness of tool wear monitoring, utilizing Gaussian processes
to deeply mine measurement data and incorporate it into the physical model, playing a
crucial role in estimating tool wear conditions . Lee et al. [39] monitored temperature
changes at the peak of cutting tools by establishing a heat transfer coefficient solution
model in the far field and an artificial neural network training model in the near field,
providing support for monitoring the wear status of CNC machine tool blades. It is evident
that the aforementioned research methods effectively combine the advantages of physical
models and data-driven models, enhancing the interpretability and generalizability of the
models.

The article provides an in-depth analysis of the mechanisms underlying tool wear,
categorizes the wear stages, and utilizes the PHM and NASA public datasets as the primary
data sources for milling experiments. It also introduces and analyzes the monitoring data
from both datasets. Based on a deep residual network, the noise interference in tool wear
signals is reduced by calculating a soft threshold function. DropBlock regularization tech-
nology is introduced to regularize the feature maps of the convolutional layers, enhancing
the model’s ability to resist interference. The optimized deep residual contraction network
model is trained and evaluated for tool wear monitoring, with an analysis of the model’s
effectiveness and tool wear recognition performance.

2. Overview of tool wear and data collection

Tool wear occurs as a result of the cutting forces generated by the contact between the
tool, workpiece, and chips. In most cases, tool wear is a normal phenomenon, while the
remaining individual cases of wear are typically abnormal. To better monitor the condition
of tool wear, it is essential to understand the mechanisms and processes involved in tool
wear.

2.1. Tool wear mechanism and wear stages
2.1.1. Mechanism of tool wear

During machining processes, mechanical forces are at work, accompanied by heat
generation and corresponding chemical reactions. These are the primary causes of tool
wear, which can be attributed to the following types of factors.

1) Abrasive wear

When high-speed machining begins, the surface layer of the workpiece is subjected to
intense friction and impact, causing plastic deformation and micro-cracks in the surface
layer, thereby forming grinding grooves.

2) Diffusion wear

Under the intense pressure of interacting forces, the constituent elements of the pro-
cessed material undergo mutual fusion, causing changes in their respective compositions
and structures.

3) Oxidation wear
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As temperature rises, oxidation occurs on the tool surface, forming softer oxides. Wear
is caused by friction between chips, which is known as oxidation wear. Oxidation is a
non-cutting phenomenon induced by high temperatures.

4) Adhesive wear

Under specific pressure and temperature conditions, the cutting portion of the tool
comes into contact with the chip and undergoes friction. Adsorption occurs between the
molecules of the material, leading to adhesive wear.

5) Cold welding wear

During the cutting process, high pressure and intense friction occur between the
workpiece, chip, and front and rear tool surfaces, resulting in cold welding.

2.1.2. Tool wear stage

Based on the differences in the machining process and the extent of tool wear, the tool
wear process is divided into three stages: initial wear, normal wear, and severe wear.

1) Initial wear

When machining first begins, the tool is relatively new, and its cutting edge is extremely
sharp. The sharp cutting edge results in a small contact area between the tool and the
workpiece, causing significant stress concentration at the tool tip, thereby accelerating the
surface grinding speed during the machining process.

2) Normal wear

During the normal wear stage, the contact area between the tool and the workpiece,
as well as the contact stress between them, is highly stable, characterized by surface contact
and relatively low stress.

3) Severe wear

The severe wear stage is the most critical phase of wear, particularly toward the latter
part of this stage, which significantly impacts the tool’s cutting performance. At this stage,
the surface structure of the tool no longer meets the machining accuracy requirements, and
the tool’s performance has significantly deteriorated compared to the previous stage.

Tool life is influenced by various factors, including differences in cutting processes
and changes in workpiece and tool materials. Typically, tool life is described by Taylor’s
formula, which can be expressed as:

VeTn X apxvgy = C, 1)

where, V. represents the cutting speed, T represents the tool life, a p Tepresents the back
cutting depth, and v represents the feed rate. x and y are determined experimentally. n
and C are constants representing the characteristics of the tool material, workpiece, and
feed rate.

2.2. Tool wear experiments and data sets
2.2.1. PHM milling dataset

In this paper, tool milling data collected from the High-Speed CNC Machine Tool
Tool Health Prediction Competition organized by the Predictive and Health Management
(PHM) Association was selected as one of the datasets for this study.

By repeating the full life cycle experiment 10 times under the same machining condi-
tions, relevant signal data from 5 milling cutters were collected across the 10 experiments.
In three of these measurements, wear values of the rear surfaces of the three cutting edges
of the milling cutters were also collected. The PHM dataset used in this study consists of
these three datasets, which include wear values and corresponding tool monitoring signal
data.

The signal types collected in the milling cutter wear dataset include milling force
signals, vibration signals in the X, Y, and Z directions of the three coordinate axes, and the
root mean square (RMS) values of acoustic emission (AE) signals, totaling seven types of
data.
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2.2.2. NASA milling dataset

To validate the proposed model’s ability to predict tool wear under varying operating
conditions, a publicly available NASA dataset was also incorporated. The experiments
conducted using this dataset involved milling operations performed on a Matsuura ma-
chining center, with different cutting parameters and machining conditions employed
throughout the experiments. Signal acquisition utilized multiple sensors to collect vibration
and acoustic emission signals from the worktable and spindle, as well as current signals
from the DC spindle motor and AC spindle motor, with a sampling frequency of 100 kHz.

3. Key technologies for tool wear monitoring
3.1. Deep residual networks

One of the most notable features of deep learning is the “depth” of its network layers.
By stacking deep layers, it achieves higher accuracy in image processing tasks, enabling the
system to possess sharp image and speech recognition capabilities [40,41]. A simple neural
network consists of an input layer, an output layer, and hidden layers. The neural network
first calculates the output result through forward propagation i(n)-h(n)-o(n), then compares
it with the sample to determine the error, and finally adjusts the gradient of the weights in
the backward direction. The process of training the neural network involves continuously
adjusting the parameter matrix. During backpropagation through the hidden layer, the
neural network continuously updates the parameter matrix. However, as the number of
network layers increases, the gradient of the parameter matrix gradually diminishes, and
gradient decay becomes more severe, leading to the network being unable to perform
backpropagation weight adjustments.

A deep residual network (DRN) is a type of deep convolutional network [42]. Given a
network input x, we want the output to be H(x) = F(x) + x, so the network only needs
to learn the residual F(x) between H(x) and x. By directly adding an identity connection
to the original network, fitting H(x) and the residual function F(x) is equivalent, and the
original function becomes H(x), thereby passing the identity mapping of x to the output.

3.2. Attention mechanism

The key to incorporating attention mechanisms into deep learning networks is to
enable the network to adaptively focus on the areas that require attention. Attention
mechanisms can be divided into two aspects: channel and spatial. Among these, the SENet
algorithm and ECA algorithm are based on channel attention mechanisms.

This paper takes the SENet algorithm as the core attention mechanism, which is an
algorithm that applies channel attention mechanisms [43]. Channel weights are obtained
through a convolutional neural network, and a “recalculate feature weights” strategy is
adopted to learn the importance of each feature channel and adjust the weight parameters,
thereby re-calibrating the features in the channel dimension. This method involves a high
computational load but enables the network to learn the correlations between channels.
Inputting the channel attention map output by SENet into the next-level network model
can improve the model’s accuracy. The specific process is as follows:

Input a feature map of size C x H x W, first compress the feature map using global
average pooling to obtain a feature map of size 1 x 1 x C, followed by two fully connected
layers for nonlinear transformation. Finally, the values are fixed within the 0-1 range via
the Sigmoid function, and the resulting weights are multiplied by the corresponding input
feature vector of the channel, thereby achieving “feature recalibration” on the channel
attention level.

4. Tool wear monitoring model based on improved deep residual contraction network

This paper focuses on tool wear monitoring in precision machining of CNC machine
tools. Based on the key technologies described above, an improved residual contraction
network structure is designed, as shown in Figure 1. The preprocessed tool vibration
monitoring signals are used as input, and multiple improved residual contraction modules
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are used for feature extraction. Finally, after passing through the GAP layer, the monitoring
results of the tool wear status are output.
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Figure 1. Structure diagram of the improved residual contraction network

4.1. Soft threshold calculation

The soft threshold function is a key step used in many signal denoising methods. The
calculation method for soft thresholding is as follows:

X—T X>T,
y=< 0 —t<x<T, 2)
x+17T x< —T.

In the equation, x represents the input signal value, y represents the output after
soft thresholding, and 7 is the set threshold, i.e., a positive parameter. Unlike the ReLU
activation function, which directly sets all negative features to zero, soft thresholding sets
features close to zero to zero, thereby retaining useful negative features without affecting
the actual recognition performance. During soft thresholding, the inverse of the input
corresponding to the output is either 1 or 0, which avoids the issues of gradient explosion
and gradient vanishing when applied to neural networks. Its derivative is as follows:

5 1 x>,
a—yz 0 —t<x<m, 3)
X 1 x<—1.

4.2. Basic module of deep residual contraction network

Deep Residual Contraction Networks (DRCNSs) are a variant of residual networks
designed for noisy signals, with a basic structure similar to that of the basic modules of
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residual networks. The key improvement lies in the use of neural networks to autonomously
learn and generate thresholds, thereby achieving soft thresholding of features.

Batch normalization (BN) and ReLU are used as batch normalization processing
and activation functions, respectively, while Conv represents the convolution layer. By
introducing weights generated through autonomous learning as thresholds on top of the
residual module, soft thresholding of features is achieved, thereby reducing the impact of
noise. To ensure that the thresholds are positive and not excessively large, the results of
global average pooling are first subjected to absolute value processing to ensure positive
values, and then multiplied by the learned weights to obtain the thresholds, thereby
ensuring that the generated thresholds do not become excessively large.

4.3. Improved activation function layer

This study addresses the problem of difficulty in monitoring tool wear status in noisy
environments by proposing an improved activation function layer that fully utilizes moni-
toring signals and anti-interference capabilities to enhance the tool wear status recognition
performance of neural network models.

Currently, commonly used activation functions in neural networks include ReLU and
Sigmoid. The calculation process of the Sigmoid activation function is as follows:

1

1+ e Xxigmoid ’

Ysigmoid = 4)
In the formula, Xg;¢0i represents the input of the Sigmoid activation function, and
Ysigmoid Tepresents the output calculated by the Sigmoid activation function.
ReLU is currently the most commonly used activation function in neural networks. Its
calculation process is as follows:

_J XReru XReru >0,
YReLU = { 0 xgoy <0, )

In the equation, xg.r1; represents the input of the ReLU activation function, and yr.ru
represents the output after calculation by the ReLU activation function.

During the monitoring of tool wear status, the original vibration monitoring signals
often contain a large number of negative values. If the ReLU activation function is used
in the tool wear status recognition model, the negative values in the vibration monitoring
signals will be discarded, failing to fully utilize the signal characteristics and significantly
weakening the neural network model’s performance in recognizing tool wear status. To
address this issue, an activation function with negative outputs, SiLU, is employed. Its
calculation process is as follows:

YsiLu = x - Sigmoid(x). (6)

This activation function is based on the Sigmoid activation function, with the output
obtained by multiplying the input. This approach does not completely eliminate negative
output values in tool vibration monitoring signals, thereby fully utilizing the vibration
monitoring signals while preventing gradient dispersion.

In the current tool wear state recognition neural network model, the anti-interference
capability of the model is enhanced in most cases by using a manually set Dropout regular-
ization rate in the fully connected layer, which reduces the correlation between neurons as
a form of data augmentation to mitigate overfitting.

To address the issue of Dropout being ineffective for convolutional layers, DropBlock
regularization technology was introduced to regularize feature maps in convolutional
layers. This method no longer involves dropping individual neurons but instead deletes a
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continuous region of the feature map, thereby reducing the risk of overfitting and enhancing
the model’s resistance to interference. The calculation process for DropBlock is as follows:

1 —keep_prob feat_size?

block_size? (feat_size — block_size +1)2’

)

keep_prob is the probability of a neuron being disabled in traditional Dropout, feat_size
represents the size of the feature map, and vy represents the number of features to be deleted.

4.4. Improved residual shrinkage module

The improved residual contraction module is shown in Figure 2, where BN denotes
batch normalization, Conv represents the convolution layer, and X represents the input.
Compared with the original module, the improved residual contraction module replaces
the ReLU activation function with the improved activation function layer proposed in this

paper.
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Figure 2. Comparison Chart of different regularization methods

5. Simulation study on the effectiveness of tool wear monitoring models
5.1. Monitoring model training and recognition performance

To validate the effectiveness of the tool wear monitoring model designed in this paper,
the model was trained and tested. The Dropout parameter was set to 0.2, and the number
of iterations was set to 200. The monitoring accuracy and loss function iteration process of
the model during the training process are shown in Figure 3.
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Figure 3. Model loss function and accuracy training iteration results
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As shown in the figure, on the PHM and NASA datasets, the model becomes more
stable as the number of iterations increases, with significant fluctuations in loss and accuracy
during the first 25 iterations. Specifically, when the model reaches approximately 60 epochs,
the monitoring accuracy for tool wear on both datasets stabilizes above 95%. For the loss
function, the model converged after 60-65 iterations, achieving loss function values of 0.12
and 0.17 on the PHM and NASA datasets, respectively. Compared to previous studies, the
accuracy of the proposed model is approximately 3%—-10% higher than that of traditional
models, and its training and prediction performance outperforms most reported models,
demonstrating the feasibility and superiority of the proposed model.

To further analyze the performance of the tool wear monitoring model based on the
improved deep residual contraction network in this paper, convolutional neural networks
(CNN), long short-term memory neural networks (LSTM), and support vector machine
models (SVM) were selected as comparison models. The recognition accuracy rates of the
four models for three different tool wear states in the test set were calculated separately.

The recognition accuracy rates of different models for different wear states are shown
in Table 1. During the normal wear stage, the recognition accuracy rates of all four models
were higher than those in the other two wear stages, primarily because the normal wear
stage had the largest number of samples, making the models more stable in this stage.
Across different wear stages, among the three comparison models, the CNN model per-
formed best, while the LSTM model and SVM model performed similarly. However, they
were slightly inferior to the model proposed in this paper, with the CNN model having an
accuracy rate 3%-5% lower. This indicates that introducing an attention mechanism while
improving the network’s key modules can effectively allocate feature weights, thereby
aiding in the accurate identification of tool wear.

Table 1. The accuracy of different models of wear and tear

Type Accuracy rate (%)
CNN | LSTM | SVM Ours
Initial wear | 93.15 | 91.53 | 90.54 97.29
Normal wear | 94.51 | 93.19 | 91.67 99.13
Severe wear | 92.23 | 89.24 | 88.42 95.39

To more accurately evaluate the overall performance of the proposed deep learning
tool wear monitoring model, different evaluation parameters were calculated for the four
models, including sensitivity, specificity, precision, and F1 score.

Table 2. Monitoring performance analysis of tool wear monitoring model

Type Model | Sensitivity (%) | Specificity (%) | Recall (%) | F1 (%)
Initial wear CNN 93.69 93.02 91.55 94.01
LSTM 90.91 92.47 91.8 92.36

SVM 91.45 91.2 90.48 93.38

Ours 96.83 98.42 96.97 97.64

Normal wear | CNN 94.93 90.33 93.05 93.26
LSTM 93.67 91.79 90.3 90.12

SVM 92.05 91.59 92.22 93.98

Ours 99.62 99.76 98.7 96.49

Severe wear CNN 93.14 94.99 94.14 91.95
LSTM 92.07 91.75 94.43 92.42

SVM 92.01 90.84 92.32 93.87

Ours 98.76 98.15 98.26 98.23

The performance comparison results of the three tool wear monitoring models are
shown in Table 2. As shown in the table, the sensitivity of all three models is highest
during the normal wear stage, indicating that the false negative rate is lowest in this stage.
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The sensitivity of the proposed model is higher than that of the comparison models in all
stages. Additionally, the specificity of the comparison models fluctuates significantly across
different wear stages, resulting in lower reliability and model instability. In contrast, the
specificity of the proposed model remains above 98% throughout. Furthermore, in terms of
precision and F1 scores, the proposed model achieved the highest values across different
wear states, with the F1 score reaching a maximum of 98.23% during severe wear. This
indicates that the model demonstrates the best overall performance when monitoring tool
condition during the severe wear stage. Based on the experimental data, the proposed
model’s evaluation parameters outperform those of the comparison models, exhibiting
extremely high reliability and making it highly suitable for tool wear monitoring.

5.2. Monitoring model effectiveness assessment

To validate the effectiveness of the tool wear monitoring model proposed in this
paper, we tested and analyzed the performance of the model by comparing the prediction
accuracy of four different models in the task of online monitoring and early warning of
tool wear in CNC machine tools. Figures 4 and 5 show the monitoring results of rear face
wear for different models on the PHM and NASA datasets, respectively. As can be seen
from the figures, the prediction curves of these methods generally show an upward trend,
consistent with the characteristic of tool wear accumulating over time. However, compared
with the method proposed in this paper, the other methods exhibit significant fluctuations.
Additionally, Figures 6 and 7 show the absolute identification errors of different models in
detecting rear tool face wear on the PHM and NASA datasets, respectively. Statistically, the
absolute error in identifying tool wear throughout the entire wear period for the proposed
model ranges from 0 to 8.5 um, while the identification error for the comparison models can
reach up to 20.7 yum. When tool wear reaches a certain threshold, cutting force and cutting
temperature increase sharply, accelerating the rate of tool wear and increasing the difficulty
of identification. The proposed model demonstrates high sensitivity in identifying tool
wear throughout the entire wear period, thereby validating the superiority of the proposed
method.
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Figure 7. Identification of absolute errors in NASA data sets

In order to quantitatively compare the performance of the model in this paper with
that of traditional models on different datasets, the root mean square error (RMSE), mean
absolute error (MAE), and coefficient of determination (R?) of the monitored tool wear
values and actual tool wear were calculated. The calculation methods for these three
indicators are as follows:

1 N
RMSE = | = ) (pi — vi)% (8)
N i=1
1N
MAE = =Y |pi — vil, )
N =

R2_ 1. Lilpi—yi)?

iy —vi)*

In the equation, N is the total number of samples, p; is the ith monitored wear value,

y; is the ith actual wear value, and 7; is the mean of the actual wear values. Smaller RMSE
and MAE values and larger R? values indicate better predictive performance of the model.
Table 3 quantitatively evaluates the performance of different monitoring models based

on RMSE, MAE, and R2 metrics. Comparing these results, it can be observed that the
identification accuracy of the proposed model is higher than that of the comparison models
on both datasets, demonstrating the positive effect of deep residual networks and attention
mechanisms on tool wear monitoring. Compared to the comparison models, for example,
in the PHM dataset, the RMSE and MAE of the proposed method are 13.29 and 12.15,
respectively, representing a reduction of over 56% compared to the comparison methods.
Additionally, regardless of the dataset, the proposed method achieves the highest R2 value,

(10)
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with an improvement of up to 6.55 percentage points. This demonstrates that the proposed
method significantly outperforms other methods in terms of overall performance and
exhibits good generalization capabilities.

Table 3. Comparison of model performance based on RMSE, MAE and R?

Date set Model RMSE MAE | R? (%)

PHM Ours 13.29 12.15 | 98.29
CNN 20.86 21.48 | 95.89
LSTM 24.47 26.82 | 91.74
SVM 23.03 2424 | 9391

NASA Ours 14.56 11.94 | 97.25
CNN 18.52 20.02 | 94.92
LSTM 22.8 21.26 | 92.08
SVM 21.78 20.59 | 90.89

5.3. Tool wear condition identification

In this study, the number of positive samples correctly identified as positive can be
represented as TP = {TP;, TPy, TPs}, and the number of positive samples incorrectly
identified as other categories can be represented as FN = {FNj, FNy, FNs}, and the
number of negative samples correctly classified as positive samples can be represented as
FP = {FP;, FPy, FPs}, where the subscripts I, N, S denote the initial wear stage, normal
wear stage, and severe wear stage, respectively.

Using the severe wear stage as an example, the recall rate and precision rate can be

calculated as follows:
TPs

Rg = =——— x 100% 11
S TPs + FNg % % (11)
TPs .

In the formula, w is the weighting factor, and w;,wy, w3 are set to 0.15, 0.4, and
0.45, respectively. The calculations yield the recall rates and precision rates for the three
categories, denoted as R = {R}, Ry, Rs} and P = {Pj, Py, Ps}, respectively. Assigning
different weights to the recall and precision rates for different wear stages is referred to as
RWA (Recall Weighted Average) and PWA (Precision Weighted Average). Weakening the
weight of the initial wear stage and strengthening the weight of the severe wear stage, the
average of the three stages is used as the final recall and precision rates for identification.
RWA and PWA can be expressed as:

RWA = wiR; + wyRy + w3Rg, (13)

PWA = w1 P +wy Py + w3 Ps. (14)

The confusion matrix is used to visually evaluate the model’s recognition results
for imbalanced data categories. Figure 8 shows the tool wear state recognition results
after different sensing signals are input into the model. Among them, Figures 8(a) and
(b) show the results based on acceleration signals, while Figures 8(c) and (d) show the
results based on milling force signals. It is worth noting that the model structures for
both signal inputs are identical, thereby avoiding the issue of model retraining caused by
sensor replacement in actual machining environments. As shown in the figure, both signals
demonstrate excellent performance in identifying the severe wear stage, validating the
model’s generalization capability across different sensory signals. Specifically, in Figure
8(d), the recall rate and accuracy for the severe wear stage exceed 95%, achieving very good
results. The identification results based on cutting force signals are more accurate, as cutting
force is more sensitive to tool wear. Notably, the number of samples incorrectly identified
as the severe wear stage from other categories is nearly zero, which avoids downtime
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losses caused by misjudging the tool change timing in actual engineering applications.
Additionally, in the recognition results based on acceleration signals, the number of samples
incorrectly identified as the severe wear stage from the initial wear stage is zero, effectively
avoiding downtime losses caused by monitoring errors during new tool milling.
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Figure 8. Identification results of tool wear status of different perceived signals

6. Conclusion

This paper derives several types of wear from the wear mechanism of cutting tools
and introduces the two common milling tool wear datasets used in this study, namely the
PHM and NASA milling datasets. Additionally, key technologies for cutting tool wear
monitoring are employed to construct a cutting tool wear monitoring model. The model
employs soft thresholds to avoid issues such as gradient explosion and vanishing gradients.
Nonlinear factors are added to the network to achieve high-dimensional nonlinear space
mapping of tool wear features, thereby enhancing the model’s monitoring performance.
Through experiments, the model’s effectiveness in tool wear monitoring is validated, and
its ability to identify tool wear states is evaluated.

After 70 iterations, the proposed model achieved convergence in terms of tool wear
recognition accuracy and loss values on the PHM and NASA datasets. The recognition
accuracy exceeded 95% under different wear conditions, with the maximum F1 score
reaching 98.23% under severe wear conditions, demonstrating the highest performance.
The model’s prediction results for rear face wear are close to the actual results, with
an absolute identification error of less than 8.5 ym. Additionally, the model’s predicted
absolute coefficient is significantly higher than that of the comparison model. Under milling
force signals, the model achieves a recall rate and accuracy exceeding 95% for severely
worn tools on the NASA dataset.

Currently, research on tool wear and condition monitoring technology primarily in-
cludes wear value monitoring, wear and damage condition monitoring, and life prediction.
Current tool wear monitoring technology has not yet achieved widespread application in
actual machining processes, primarily due to defects in sensor technology, interference
with the machining process, real-time monitoring computational delays, and limitations in
model applicability. Future research on tool wear and condition monitoring technology
should focus on the following aspects:
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(1) Multi-sensor fusion technology can compensate for the limitations of single-sensor
signal capture, but the number of sensors used should not be excessive, and they should be
reasonably combined to reduce costs and post-processing complexity.

(2) Sensors with minimal impact on installation location and machining processes
should be selected, and the integration of sensor technology with wireless technology
should be considered.

(3) Optimal feature extraction methods and monitoring models should be identified
for different machining processes and signals, and research should be strengthened to
optimize model recognition speed and accuracy.
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