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Abstract: To address the common issues of low production line efficiency, poor product quality,
and inadequate equipment maintenance in current industrial production, this paper investigates
the application of smart manufacturing technology in optimizing industrial production processes
and controlling product quality. First, industrial data is preprocessed using parallelized K-means
clustering combined with the contour coefficient method to determine the optimal production
process clusters. Second, the parallelized Apriori algorithm is employed to mine industrial product
association chains. Based on this, a flexible neural tree model is introduced for production process
optimization modeling. A industrial production execution management system with three core
functions—smart scheduling, quality prediction, and equipment health management—has been
designed and implemented. The Al industrial production execution management system proposed in
this paper significantly improves industrial production efficiency, resource utilization, and equipment
reliability. After its implementation, the overall qualified rate of A Company’s main power supply
circuit board production increased by 20%, providing a feasible solution for the company to achieve
smart manufacturing upgrades.

Keywords: K-means clustering, Apriori algorithm, flexible neural tree model, production process
optimization

1. Introduction

With the rapid iteration of information and communication technologies such as the
Internet, big data, cloud computing, and artificial intelligence worldwide, the digital econ-
omy is becoming an important force in reshaping the new ecosystem of global economic
governance [1,2]. This integrated industrial development model is not only crucial to
achieving inclusive growth and sustainable development, but is also driving a reshuffling
of the world economy and the emergence of a new global economic governance landscape
[3-6]. In the manufacturing sector, the application of smart manufacturing technologies
presents unprecedented opportunities for businesses while also bringing new challenges.

Production process optimization aims to enhance efficiency, reduce costs, and mini-
mize resource waste by improving and optimizing every stage of the production process [7].
Leveraging advanced technologies such as big data and artificial intelligence, smart man-
ufacturing technologies can drive the intelligent and precise optimization of production
processes, significantly boosting production efficiency and quality [8,9]. Based on smart
manufacturing technology, enterprises can achieve real-time monitoring, precise analysis,
and intelligent optimization of production processes, thereby more deeply identifying
potential issues in production processes and more accurately pinpointing areas for im-
provement [10-13]. Therefore, introducing lean production and continuous improvement
concepts, advocating full participation, and continuously optimizing production processes
are important methods for promoting production process optimization [14-16].

Additionally, smart manufacturing technology can help enterprises optimize the
allocation and efficient utilization of production resources, enhance the flexibility and
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agility of production lines, and better respond to market changes and customer demands
[17-19]. These advantages make lean production have broader development prospects
and application potential under the backdrop of smart manufacturing [20]. From the
perspective of industry development trends, an increasing number of enterprises are
beginning to combine smart manufacturing technology with lean production and gradually
exploring more efficient and intelligent production methods [21-24]. This not only helps to
enhance enterprise competitiveness and market share but also injects new momentum into
the industry’s transformation, upgrading, and sustainable development [25,26].

As times evolve and society develops, management theories and practices are con-
tinuously validated and deepened in production and daily life. Therefore, scholars have
conducted research on optimizing enterprise production processes and quality control
under the backdrop of digital intelligence. Holmemo and Korsen [27] indicated that digital
tools have centralized and planned characteristics, which are in significant conflict with
decentralized production processes. Therefore, how to achieve coordination between intel-
ligent manufacturing and lean production is a major challenge faced by enterprises in their
long-term production processes. Hoellthaler, Braunreuther and Reinhart[28] emphasized
that an extended lean production system based on digital technology ensures the effi-
cient operation of enterprise production processes, enabling enterprises to maintain strong
market competitiveness even when faced with complex product varieties, personalized
demands, and flexibility objectives. Romero et al. [29] explored the development and
application of lean production practices in the digital intelligence field, pointing out that
smart manufacturing technology can detect and eliminate “physical waste” and “digital
waste” phenomena in production processes, thereby optimizing production processes and
improving production quality. Cifone et al. [30] investigated mechanisms for reducing
digital waste in lean production practices, indicating that under the support of digital tech-
nology, the execution speed and precision of enterprise production systems are significantly
enhanced, while management decision-making capabilities are also effectively improved.
Dupuis and Massicotte[31] clarified the transformative impact of digital technology on
production models for manufacturing enterprises and its role in enhancing employee capa-
bilities, emphasizing the continuous advancement of digital lean production practices in
addressing organizational hierarchical conflicts.

Valamede and Akkari [32] proposed an intelligent production solution combining lean
production with data-driven methods. On one hand, it leverages intelligent technology
to upgrade manufacturing processes, and on the other hand, it relies on lean produc-
tion principles to optimize production processes, enabling enterprises to maintain high
production efficiency in dynamically changing environments and intensely competitive
markets. Powell et al. [33] pointed out that Industry 4.0 technologies and their associated
cyber-physical production systems can optimize the production and operational methods
of manufacturing enterprises. Therefore, it proposes integrating lean production prac-
tices with Industry 4.0 technologies to provide decision support for enterprise production
management. Rossini et al. [34] examined the role of lean production management in the
digital transformation process of manufacturing enterprises. Different forms of digital
transformation models represent the degree of enterprise investment in lean production.
With the support of Industry 4.0 technology, enterprises have gained the ability to plan
for the present and future, thereby effectively enhancing enterprise performance. It can be
observed that digital and intelligent technologies can significantly improve production effi-
ciency and quality, while also promoting enterprise digital transformation and intelligent
upgrading, thereby enhancing enterprise competitiveness and sustainable development
capabilities. However, at present, there are few practical research results in this field, and
research on related intelligent manufacturing methods holds significant potential.

This paper optimizes industrial production processes based on smart manufacturing
technology. Existing data is preprocessed using methods such as data integration, missing
value filling, and time sequence adjustment. An inter-class association rule algorithm
based on the Apriori algorithm is then used to extract deep association chains between
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production processes from the preprocessed data. Subsequently, a dynamic optimization
model for production processes based on a flexible neural tree network is established.
Finally, an integrated multi-functional industrial production execution management system
is designed and implemented. Different simulation experiments are designed for each
functional module of the system. The system’s practical application effectiveness is also
validated.

2. Application of smart manufacturing technology in industrial production optimization
2.1. Data-driven production optimization strategies

Data collection is the cornerstone of data-driven production optimization strategies.
In a smart manufacturing environment, sensors, IoT devices, and intelligent monitoring
systems on production lines continuously generate massive amounts of data. This data
includes multi-dimensional information such as equipment status, production capacity,
and quality indicators, forming a digital image of the production process. Through data
collection technology, this information is aggregated in real time and undergoes data
preprocessing to remove noise and outliers, ensuring data accuracy and integrity.

The next step after data collection is data analysis, which includes methods such
as statistical analysis, machine learning, and deep learning. Through these technologies,
enterprises can discover patterns and identify anomalies in the data to achieve real-time
monitoring and analysis of the production process. For example, through machine learning
algorithms, enterprises can perform predictive maintenance on equipment operating status,
detect potential faults in advance, and avoid production interruptions. At the same time,
by mining historical data, companies can identify bottlenecks and inefficient links in the
production process, providing a reference for subsequent optimization decisions. Produc-
tion process optimization based on data is the core component of a data-driven strategy.
It uses the results of data analysis as a basis for fine-tuning and improving production
processes. Through data analysis, companies can identify potential issues in the production
process, such as resource waste and inefficient links.

2.2. Intelligent optimization applications in automated control systems

During the production process, the automated control system uses sensors to collect
various data in real time, such as temperature, humidity, and pressure, forming a data
stream. Traditional automated control systems typically use fixed control algorithms for reg-
ulation, lacking adaptability to complex production environments. In contrast, intelligent
optimization technology can analyze and learn from large amounts of data, continuously
optimizing control strategies to achieve real-time monitoring and regulation of the pro-
duction process. For example, in steel production, intelligent optimization technology can
adjust steelmaking temperature and time in real time based on raw material composition
and equipment status, ensuring product quality and production efficiency. Intelligent opti-
mization technology can also enable predictive capabilities in automated control systems.
By analyzing historical production data, intelligent optimization algorithms can predict
future trends and changes in production processes, providing decision-making support
for enterprises to prepare production plans and resource scheduling in advance. Predic-
tive capabilities enable automated control systems to respond more flexibly to changes in
market demand and fluctuations in production processes, enhancing the adaptability and
response speed of production lines.

3. Industrial product data preprocessing and acquisition of associated chains

Through data preprocessing, the original complex historical data is processed to
provide a higher quality dataset for subsequent algorithm analysis. For the processed data,
strong association rules between links are obtained through association rules [35], and
corresponding association chains are obtained.
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3.1. Preprocessing of industrial product data
3.1.1. Data integration

Since historical data is not stored in a database, it is necessary to manually export data
item by item. The exported data is scattered and irregular. To address the issue of scattered
data, the data is consolidated.

3.1.2. Null value filling

For integrated data, there are many instances of missing values in data records due to
various reasons, primarily caused by temporary shutdowns resulting from malfunctioning
industrial product data collection equipment and human error during data synthesis.

For missing values, first analyze the data before and after the missing value in that
segment. If the data shows an increasing or decreasing trend, use the arithmetic sequence
method to fill in the missing values. If there is no obvious trend, use the mean method to
fill in the missing values, i.e., calculate the mean of the values before and after the missing
value.

3.1.3. Sequential adjustment

Treat the data from each stage as time series data and calculate the influence relation-
ships and influence sequences between the stages. At this point, two adjustments need to
be made to the dataset: horizontal and vertical. Horizontal adjustment involves calculating
the sequence of stages and then arranging them in order of sequence. Vertical adjustment
involves adjusting each stage in terms of time sequence so that the recorded values at the
same time are recorded according to their mutual influence relationships.

3.1.4. Parallelization of the K-means clustering algorithm

After preliminary calculations, industrial product data still contains a large amount
of historical records. At this point, it is necessary to perform clustering operations on
the dataset to reduce the dispersion of data at each stage, thereby facilitating subsequent
association rule algorithm calculations. The classic K-Means clustering algorithm [36]
is selected to perform clustering operations on each stage separately, with the K value
automatically determined using the contour coefficient algorithm based on cohesion and
separation.

3.1.5. Determining the K value for link clustering using the contour coefficient method

The contour coefficient is a commonly used method for evaluating clustering effec-
tiveness and can be used to determine the optimal clustering K value when the optimal
clustering K value is unknown. By using the contour coefficient method to evaluate the
clustering effectiveness under different clustering K values, the optimal K value can be
obtained and selected. The contour coefficient of a sample point X; is defined as follows:

_ b—a
~ max(a,b)’

1)

Among them, a is the average distance between X; and other samples in the same
cluster, referred to as the cohesion, and b is the average distance between X; and all samples
in the nearest cluster, referred to as the separation. After obtaining the contour coefficients
of all samples, the average contour coefficient can be obtained by calculating the average
value.

3.2. Obtaining industrial product association chains
3.2.1. Interclass association rule algorithm based on the Apriori algorithm

The Apriori association rule mining algorithm is briefly introduced in two stages.
Search for all frequent item sets stage:
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1) The first step is to generate frequent /_ item sets. In the initial stage of the algorithm,
the item database is scanned, and all item sets are marked as candidate [_ item sets. At the
same time, the support count of each candidate /_ item set is recorded. Candidate /_ item
sets that meet the minimum support threshold are selected as frequent /_ item sets.

2) Based on the frequent K_item sets generated in the previous step, frequent (K +
I)_item sets are then generated. When generating candidate sets for frequent (K + I)_item
sets, the algorithm achieves this through a connection step that connects two frequent
K-item sets. The result of this step is only a candidate (K + I)_item set. At this point, it
is necessary to rescan the database to obtain the support counts for the (K + I)_item sets,
thereby determining whether the (K + I)_item sets are frequent item sets. This process is
known as the pruning step.

3) Iterate step 2) until no new candidate item sets are generated or the predefined
K-item set is reached, at which point the calculation stops.

Frequent item set generation Strong association rule generation stage:

(1) For each frequent K_item set generated in the previous stage, generate association
rules X — Y using lexicographical order;

(2) Calculate the confidence level c based on the generated association rules X — Y. If
c is greater than or equal to the confidence threshold, then this association rule is a strong
association rule.

3.2.2. Parallelization of the apriori algorithm

For industrial product process data, the association analysis in this section focuses on
the analysis between process clusters rather than between defective processes. Subsequent
processes will yield association rules between defective processes.

The parallelization principle of the Apriori algorithm [37] is the same as that of the
serial algorithm. The input for the parallelized algorithm is tabular data composed of
asymmetric binary variables. Before the algorithm begins mining, identical transactions
must first be merged to reduce the computational load. The mining process is also divided
into two steps: identifying all frequent item sets and generating strong association rules.
Both steps are executed in parallel using data partitioning methods.

3.2.3. Two-item association rules in the production process

By analyzing the relevance of industrial product datasets, setting minimum support
and confidence thresholds, and utilizing multi-dimensional association rules based on
Apriori to analyze clustering data between any two nodes in the dataset, we identify
frequent 2-predicate sets and generate binary association rules between any two defective
nodes.

Through analysis, the association degrees between each node are ultimately combined
into an association degree matrix. A depth-first traversal is performed on the associa-
tion degree matrix to identify the strongest association chains, which form the strongest
association trees at different nodes.

3.2.4. Obtaining the association chain

Now that we have obtained the association rules and association degrees between
any two links, we can combine the relationships between the preceding and following
items in the data, select the data that conforms to the time series order and has the highest
association degree, and obtain the strongest association chain.

4. Modeling for industrial production process optimization

The preprocessing of industrial product data provides high-quality data for obtaining
association chains, and the acquisition of association chains provides accurate chains for
subsequent modeling.



TK Techforum Journal (ThyssenKrupp Techforum) 57

4.1. Flexible neural tree model

The flexible neural tree network model is a special type of neural network model
that does not have intermediate input layers, intermediate layers, or output layers. The
connections between layers are non-direct or cross-layer, and features can be adjusted
based on prior principles. The feature subset obtained through the algorithm is the optimal
feature subset. Experimental verification shows that this network model is more efficient
and accurate than ordinary artificial neural network models in solving classification and
prediction problems.

4.2. Generation of flexible neural tree network models

The generation of a flexible neural tree network model involves the following steps:

(1) Initialize a probabilistic prototype tree.

(2) Design and optimize the neural network structure using genetic algorithms or
probabilistic reinforcement learning algorithms.

(3) Optimize the connection weights of the network model using genetic algorithms
or particle swarm optimization methods to obtain an initially optimized neural network
model.

(4) Iteratively execute the above steps until the predefined number of iterations is
reached or the optimal result is obtained.

The model flowchart is shown in Figure 1.

Initialization
v
The probabilistic enhancement
algonthm optimizes the FNT structure

Reach the preset
population
| gebr:

Particle swarm optimization
algorithm optimizes FNT parameters

Reach the preset
threshold

Reach the preset
number of cycles

/ Neural network model /

v
| End |

Figure 1. Flowchart of the flexible neural tree network model

5. Al-based industrial production quality control management system

This paper uses association rule algorithms to obtain the required industrial production
process association chains. The Al-based industrial production execution management
system models the generated association chains and historical data sets, and finds the
optimal parameters suitable for the data set by adjusting the modeling parameters. Finally,
the Transformer architecture is used to achieve global optimization of the production
process. From model construction and performance evaluation to hardware deployment,
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this chapter presents a complete closed-loop implementation path from data governance to
business applications.

5.1. Building an intelligent production scheduling model

This study systematically integrates diverse information from the production process
through state space modeling. Principal component analysis (PCA) is used to reduce the
dimensionality of process parameters such as crimping force and contact pressure. The
principal components are extracted as key features and input into subsequent models.

At the same time, the current production environment is comprehensively moni-
tored. Production factors such as the proportion of unfinished orders, overall equipment
effectiveness (OEE), material inventory levels, and changeover time costs are taken into con-
sideration, and the dynamic state of the production system is mapped to high-dimensional
feature vectors. Specifically, these are as follows:

(1) Proportion of unfinished orders:

Opending

So = ,
Ototul

(2)
Opending represents the number of uncompleted orders, and Oy, represents the total
number of orders. This ratio intuitively reflects the progress of order execution.

(2) Equipment status, overall equipment efficiency:

S; = OEE,. 3)

Among them, OEE|, represents the comprehensive efficiency of equipment k, which
comprehensively reflects the actual production efficiency and utilization rate of the equip-
ment from the dimensions of time utilization, performance, and product quality.

(3) Material status, normalized inventory level:

I

Imax

Sm = , (4)
where I, represents the inventory quantity of material m and Inax represents the maximum
capacity of material m, this method eliminates the impact of differences in inventory
capacity between different materials on the analysis.

(4) Process parameters, changeover time cost:

St = Tchange/ ®)

where Opepging represents the number of uncompleted orders, and O, represents the total
number of orders; OEE is the overall efficiency of device k reflecting device utilization; I,
is the inventory level of material m and Imax is its maximum capacity; Tchange denotes the
changeover time cost.

After extracting spatio-temporal features using a Transformer encoder, an action
probability distribution is generated, and the reward function is designed as a multi-
objective weighted form:

R =0.6D+0.3U—-0.1E, (6)

where D is the delivery rate, U is the equipment utilization rate, and E is the energy
consumption cost.

Through the two closely related parts of state space coding and decision-making
generation mechanism, the intelligent production scheduling model can comprehensively
consider numerous factors in the production process to achieve efficient, accurate, and
enterprise-specific production scheduling.



TK Techforum Journal (ThyssenKrupp Techforum) 59

5.2. Quality prediction model construction

The construction of the quality prediction model primarily consists of two main steps:
the construction of a multimodal input feature space and the use of a Transformer-based
feature extractor and fully connected classifier.

First, to effectively integrate multi-source information, this study constructs a mul-
timodal input feature space. For process parameters, continuous variables such as tem-
perature and cluster force are directly incorporated into the feature system. Signals such
as current and vibration generated during equipment operation exhibit temporal charac-
teristics, so they are organized as time series. For surface defect image data, key features
such as texture and shape are extracted from the images to convert image data into feature
vectors. Through these steps, different types of data are integrated into a unified feature
space, laying the foundation for subsequent analysis.

The quality prediction module consists of a Transformer-based feature extractor and
a fully connected classifier. The Transformer architecture, leveraging self-attention mech-
anisms, effectively captures long-term dependencies in time series data, aligning with
the processing requirements of production process time-series data. The model inputs
include process parameters, equipment operational status signals, and real-time detected
surface defect image features. During model operation, the Transformer feature extractor
performs deep feature mining on the input data, learning complex relationships between
data points. The fully connected classifier then performs classification predictions based on
the extracted features, outputting the quality risk probability for each batch of products.

To identify the key factors causing quality issues, this study employs feature impor-
tance analysis. By calculating the contribution of each input feature to the prediction results
during model training, we determine the factors significantly influencing quality risk to
assist in quality control during the production process.

We output the quality risk probability through a fully connected layer:

P(y =1/x) = o(wp - MLP(hy;) + bp). (7)
The loss function uses cross-entropy loss and adds an L2 regularization term to prevent
overfitting:
1 N R )
L=—5 Llyilog#i+ (1 —y)]+ A6 3, ()
i=1

where L is the total loss, N is the sample size, and A is the L2 regularization parameter.

5.3. Construction of equipment health management model

The construction of the equipment health management model includes improving the
accuracy of fault diagnosis.

In the equipment health management module, we use the Transformer model to model
equipment sensor data. The multi-head attention mechanism of Transformer can capture
complex dependencies between different sensors, thereby improving the accuracy of fault
diagnosis.

Multi-head attention calculation:

T
Attention(Q, K, V) = softmax (QK) v, 9)

Vg
where, Q = XWg, K = XWg, V = XWy and dj denotes the dimension of the key vector.

5.4. Hardware and software design of the system

The Al-based connector production execution management system adopts a layered
architecture design, covering the data acquisition layer, network transmission layer, plat-
form processing layer, and application service layer. The hardware and software design
selection involves the following steps and considerations:
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(1) Requirements analysis

First, clarify the objectives and determine the system functional requirements (such
as data acquisition, real-time analysis, model training, etc.), and quantify performance
indicators (such as processing delay, concurrent points, storage capacity, etc.).

(2) Scenario adaptation

Distinguish the differentiated requirements of workshop types (e.g., injection molding,
stamping, electroplating, etc.) and clarify the scenario requirements of the data collection
layer, network transmission layer, platform processing layer, and application service layer.

(3) Performance Matching

Ensure that the selected hardware meets project requirements, such as computational
capability requirements (supporting processing of data from over 5,000 concurrent points
with data latency <200ms), precision and reliability requirements (e.g., sensor precision
meeting process requirements such as +0.01mm for pressure sensors), and data collection
error rate control (e.g., production error <1.5% in electroplating workshops).

(4) Hardware Selection

Based on the requirements analysis, select appropriate hardware devices. This includes
processors, edge devices, sensors, network and storage devices, etc., and comprehensively
consider hardware selection from the aspects of requirements analysis, scenario adaptation,
performance matching, scalability, and compatibility.

(5) The Al-based connector production execution management system adopts a lay-
ered architecture design, covering the data acquisition layer, network transmission layer,
platform processing layer, and application service layer. The Al-based connector production
execution management system can be implemented using object-oriented programming
software.

6. Experimental simulation and results
6.1. Flexible neural tree model prediction results

Due to differences in the units used for data collection, it is necessary to normalize the
data so that the input and output values of the neural network uniformly fall within the
[0,1] range.

In this experiment, a comparison was conducted between the BP neural network
and the flexible neural tree. The input layer and hidden layer of the BP neural network
parameter model use the tangent S-shaped function, while the output layer uses a linear
function. The training function is the Levenberg-Marquardt BP algorithm training function,
with 400 training steps. The prediction results for product production efficiency and NOx
emissions in the production chain using the BP neural network and the flexible neural tree
network are shown in Tables 1 and 2.

The industrial production process optimization model established using the flexible
neural tree network can better predict production data, with the relative errors in predicting
product production efficiency and NOx emissions being smaller than those of the ordinary
BP neural network. This indicates that the flexible neural tree network has a significant
advantage in data modeling and prediction in industrial production process association
chains, with the smallest relative error in predicting product production efficiency being
only 0.0051%.

6.2. Simulation results of intelligent production scheduling model

To validate the effectiveness of the intelligent scheduling model designed in this paper,
algorithm verification was conducted through the construction of case studies. In this
chapter, three case studies were constructed based on a standard test set and the actual
production conditions of an anchor ring manufacturing workshop at a certain anchorage
equipment company. Three case studies were selected for construction, with scales of 5x5,
10x10, and 20 %20, respectively. These three case studies encompass large, medium, and
small scales, thereby better demonstrating the effectiveness of the model.
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Table 1. Predictive state of flexible neural tree network

N Efficiency NOx emission
Actual value | Predictive value | Relative error/% | Actual value | Predictive value | Relative error/%

1 93.0666 93.0452 0.0230 880.28 877.65 0.2988
2 93.0426 93.0750 0.0348 863.50 857.32 0.7157
3 93.5232 93.4481 0.0803 932.36 943.45 1.1895
4 93.4035 93.4631 0.0638 1084.50 1065.01 1.7971
5 93.7587 93.7767 0.0192 954.98 942.33 1.3246
6 93.7889 93.8237 0.0371 770.97 811.87 5.3050
7 93.7242 93.7606 0.0388 740.51 738.04 0.3336
8 93.8365 93.7963 0.0428 582.30 556.87 4.3671
9 93.8276 93.8636 0.0384 796.62 800.05 0.4306
10 94.1794 94.1746 0.0051 728.89 736.43 1.0345

Table 2. BP neural tree network prediction status

N Efficiency NOx emission
Actual value | Predictive value | Relative error/% | Actual value | Predictive value | Relative error/%

1 93.0666 92.8635 0.2182 880.28 877.68 0.2954
2 93.0426 92.6520 0.4198 863.50 857.30 0.7180
3 93.5232 92.9720 0.5894 932.36 943.49 1.1937
4 93.4035 93.5593 0.1668 1084.50 1065.00 1.7981
5 93.7587 92.9142 0.9007 954.98 942.29 1.3288
6 93.7889 94.1872 0.4247 770.97 811.91 5.3102
7 93.7242 92.7161 1.0756 740.51 737.94 0.3471
8 93.8365 93.8262 0.0110 582.30 716.89 23.1135
9 93.8276 93.7844 0.0460 796.62 800.04 0.4293
10 94.1794 94.0065 0.1836 728.89 736.42 1.0331

To highlight the performance advantages of the intelligent scheduling model designed
in this chapter, the constructed cases were solved using both the NSGA-II algorithm-based
scheduling model and the intelligent scheduling model proposed in this paper. To ensure
consistency in the comparison experiments, both models were applied to the constructed
cases for 12 iterations, and the means of the 12 results were compared.

Table 3. Target mean

Method Case scale | Maximum completion time (min) | Equipment utilization/% | Total energy consumption (Kw*h)
NSGA-II 5x5 1720 42 1571
10x10 2366 39 4154
20x20 4079 32 12412
This model 5x5 1051 84 1342
10x10 1822 78 3841
20x20 3125 76 11812

Table 3 shows the means of the optimization objective values under the NSGA-II
algorithm model and the intelligent scheduling model proposed in this paper. In the
solution of multi-objective scheduling problems in workshop operations, the intelligent
scheduling model designed in this chapter has absolute advantages over traditional multi-
objective workshop scheduling models in terms of reducing maximum completion time
and improving equipment utilization, due to its features of parallel processing and flexible
scheduling unit length. Equipment utilization rates all reached over 70%. In terms of
optimizing total workshop energy consumption, reducing maximum completion time can
also reduce other energy consumption in the workshop.

6.3. Simulation results of quality prediction model

This section predicts the categories of two typical industrial products, SPF and HJD,
by learning their features. SPF products have seven label categories: wrinkles, Z-shaped
scratches, K-shaped scratches, spots, dirt, bumps, and other defects. HJD data has two
label categories: qualified and unqualified.

Five-fold cross-validation experiments were conducted on SPF and HJD, with precision
and recall rates used as model evaluation metrics. Figure 2 shows the confusion matrix for
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the optimal model corresponding to SPE. The values on the diagonal represent the number
of samples where the prediction matches the actual label. The numbers 1-7 in the figure
and table correspond to the seven label categories: wrinkles, Z-shaped scratches, K-shaped
scratches, spots, dirt, dents, and other defects. The confusion matrix visually displays the
correct and incorrect classifications of the classification model by comparing the model’s
predicted results with the actual labels.

B
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Figure 2. Confusion matrix
The results of five-fold cross-validation on the randomly partitioned SPF dataset are
shown in Table 4. In each partition, the model re-learns its parameters, and then the

precision, recall, and accuracy of the model are calculated separately for each category in
each partition.

Table 4. Five-fold cross-validation

Cross validation | Divisionl | Division2 | Division3 | Division4 | Division5 | Mean
1 P 0.7196 0.7876 0.8081 0.6945 0.8444 0.7708
R 0.6004 0.8665 0.7774 0.6944 0.7716 0.7420

2 P 0.8805 0.9247 0.8504 0.9287 0.8380 0.8845
R 0.9486 0.8811 0.8944 0.6664 0.9692 0.8720

3 P 0.9529 0.9122 0.9513 0.9363 0.9624 0.9430
R 0.9648 0.9733 0.9873 0.9997 0.9743 0.9799

4 P 0.9093 0.9998 0.9096 1.0000 0.9561 0.9549
R 0.9088 0.9333 0.9096 1.0000 0.8800 0.9262

5 P 0.7999 0.6998 0.9228 0.8462 0.9996 0.8537
R 0.8000 0.7000 0.8563 1.0000 1.0000 0.8712

6 P 0.7712 0.7347 0.7346 0.8228 0.7342 0.7595
R 0.8705 0.8358 0.7074 0.8227 0.7732 0.8019

7 P 0.7751 0.8516 0.7956 0.7975 0.8427 0.8124
R 0.7045 0.7626 0.7959 0.8204 0.8102 0.7787

Acc 0.8259 0.8432 0.8301 0.8375 0.8559 0.8385

The model performs more accurately in recognizing 3-class (K-type scratches) and
4-class (spots) features, with average precision and recall rates exceeding 90% for both.
The recognition precision rate for 4-class features reaches over 95%. However, the model’s
recognition capability for the 1-class feature (wrinkles) is relatively weak, with average
precision and recall rates both below 80%, and the average recall rate for the 1-class feature
is only 74.20%. In terms of accuracy metrics across five classifications, the best and worst
performance deviation is 3.00%, with an average accuracy of 83.85%, indicating that the
model has good defect prediction capabilities for the SPF dataset.
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For the HJD dataset, five-fold cross-validation was still used to randomly divide the
dataset for experimentation. The HJD labels are divided into two categories: qualified and
unqualified. The prediction results are shown in Table 5.

Table 5. Five-fold cross-validation(HJD)

Cross validation | Divisionl | Division2 | Division3 | Division4 | Division5 | Mean
Qualify P 0.9958 0.9954 0.9984 0.9988 0.9974 0.9972
R 0.9999 0.9989 1.0004 0.9972 0.9979 0.9989

Outofline | P 0.9993 0.8749 0.9996 0.7782 0.8340 0.8972
R 0.6374 0.5822 0.6664 0.8749 0.7694 0.7061

Acc 0.9958 0.9942 0.9985 0.9974 0.9953 0.9962

Unlike the SPF dataset, the H]JD is a random sampling dataset of actual industrial
products, with qualified samples accounting for the vast majority. For the task of predicting
quality issues, the recall rate for the “unqualified” category is more important, as it reflects
the model’s ability to avoid missing problem samples. In the five-fold cross-validation
experiments, the worst recall rate for unqualified samples was 58.22%, and the best was
87.49%, with significant variation, averaging 70.61%. This indicates that the model has
a certain ability to identify non-compliant samples, but its identification capability is
not as strong as its performance on SPF. The imbalanced distribution of data can affect
the model’s identification capability to some extent. To optimize the data distribution,
data augmentation techniques can be used to expand the minority class samples, thereby
improving the model’s performance during the learning process.

6.4. Simulation results of equipment health management model

To improve fault diagnosis accuracy and training efficiency, it is necessary to expand
individual samples. In this paper, samples are segmented, with signals collected from six
sensors at 256 time points treated as a single sample, i.e., each row contains 1,536 data
points. A training set of 100,000 samples, a test set of 30,000 samples, and a validation set
of 10,500 samples are used, with 50 iterations of training.

The equipment health management model proposed in this paper is validated using
the ZHS-2 type multi-functional motor flexible rotor test bench. Seven equipment fault
operating modes were adopted: Rotor Unbalance 1 (1 screw, bph1), Rotor Unbalance 3 (3
screws, bph3), Rotor Unbalance 5 (5 screws, bph5), Rotor Unbalance 7 (7 screws, bph7), Fan
Blade Failure (fjdy), Base Looseness (jzsd), and Normal Mode (zc).

Accuracy is used as the comprehensive evaluation metric. Several common deep
learning models are selected as the control group, including the standard multi-head
attention (MHA), the equipment health management model proposed in this paper, a
one-dimensional convolutional neural network with residual structure, and a window
multi-head attention neural network (Win-MHA) that only divides windows without
moving feature maps.

Table 6 shows the classification accuracy of the six models on the validation set. Among
them, GNB is the Gaussian Naive Bayes classifier. In the table, the fault types include rotor
imbalance with 1 loose screw (bphl), rotor imbalance with 3 loose screws (bph3), rotor
imbalance with 5 loose screws (bph5), rotor imbalance with 7 loose screws (bph?7), loose
base (jzsd), fan blade failure (fjdy), and normal mode (zc). From the accuracy rates, it can
be seen that the performance of the model proposed in this paper is superior among the six
models.

To demonstrate the predictive performance of the equipment health management
model on the ZHS-2 rotor platform, a visualization analysis of the confusion matrix of the
model on the validation set was conducted, with the results shown in Figure 3.

As shown in Figure 3, there are seven fault states in the validation set, with 1,500
samples for each fault state. With codes 1-7 representing rotor imbalance 1 (1 screw, bphl),
rotor imbalance 3 (3 screws, bph3), rotor imbalance 5 (5 screws, bph5), rotor imbalance
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7 (7 screws, bph?7), fan blade failure (fjdy), base loosening (jzsd), and normal mode (zc),
respectively. For faults with actual labels of rotor imbalance with 5 screws (bph5), rotor
imbalance with 7 screws (bph?7), and loose base (jzsd), the model achieved 100% accurate
prediction. This indicates that the equipment health management model proposed in this
paper can effectively classify faults in factory production equipment and manage the health
of factory equipment.

Table 6. The accuracy of the six fault diagnosis methods in the verification set

Fault type | This model | MHA | Res-1IDCNN | ResCNN-MHA | Win-MHA | GNB
bphl 0.988 0.999 0.965 0.972 1.000 0.741
bph3 1.000 1.000 0.979 0.987 1.000 0.727
bph5 1.000 0.919 0.970 0.923 0.959 0.939
bph?7 0.991 0.987 0.909 0.987 0.965 0.603
jzsd 1.000 1.000 1.000 0.995 1.000 0.999

fidy 0.995 0.984 0.899 0.977 0.985 0.744
zc 1.000 0.953 0.999 0.979 0.971 0.960
Mean 0.996 0.977 0.960 0.974 0.983 0.816

0.000 300.0 600.0 900.0 1200 1500
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Figure 3. Visual results

6.5. System application effectiveness

Following the implementation of an Al-based industrial production execution man-
agement system at Company A, a solid foundation has been laid for optimizing production
processes. The optimization of industrial production processes is shown in Table 7. Employ-
ees not only improved work efficiency but also optimized the work environment, thereby
enhancing the overall level of intelligent production management within the company.
The average production and assembly time for major components was reduced, with the
most significant optimization effect observed in the production time of the water-cooled
pipe routing process. After optimization, the required man-hours were reduced by 66.67%
compared to the original production requirements.

Smart manufacturing requires quality to be built into the manufacturing process,
which necessitates robust quality control procedures as a foundation. Additionally, the
application of smart manufacturing technologies has been enhanced in critical stages of the
production process, thereby improving product quality. As shown in Figure 4, the compari-
son of the main power circuit board pass rate in 2023, when Company A implemented an
Al-based industrial production execution management system, with the main power circuit
board pass rate in 2022, when the system was not yet in use, demonstrates that the pass
rate of Company A’s main power circuit boards—a key component of its products—has
continued to improve, rising from approximately 70% to over 90%. This achievement is
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attributable to the significant role of smart manufacturing technology in enhancing product

quality.
Table 7. Production optimization
Number | Process Primary labor time | Optimize the working hours of the latter

1 Mainboard manufacturing 13 10
2 Silicon controlled manufacturing 4 2
3 Reactor manufacturing 36 25
4 Water line 3 1
5 Circuit line 6 5
6 connection 23 20
7 Surface treatment 15 12
8 Intermediate survey 14 11
9 Final package 11 8
10 warehousing 5 3

2023 12
I 2022

Figure 4. The comparison of the rate of the main power line road plate

7. Conclusion

This paper designs and constructs an Al-based industrial production execution man-
agement system that systematically integrates data analysis, artificial intelligence, and
smart manufacturing technologies.

By applying the parallelized Apriori algorithm to identify association chains between
industrial production process stages, the system establishes a robust data foundation for
understanding the interdependencies between production stages and modeling subsequent
industrial production process optimization models. The industrial production process
optimization model based on a flexible neural tree network achieves a relative prediction
error of just 0.0051% for product production efficiency, demonstrating its effectiveness as a
tool for industrial production process optimization.

This paper designed an Al-based industrial production execution management sys-
tem. The intelligent scheduling model achieves dynamic management of production
resources, significantly reducing completion time and demonstrating significant advan-
tages in improving equipment utilization rates, which have all been increased to over
70%. Additionally, using existing data, the prediction accuracy of product quality defects
was significantly improved in two typical industrial product datasets: SPF and HJD. The
equipment health management model achieved 100% accuracy in predicting fault states
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such as rotor imbalance with 5 loose screws, rotor imbalance with 7 loose screws, and loose
bases in the validation dataset.

The proposed methodology has achieved good results in both production efficiency im-
provement and product quality control, providing strong support for enterprises to achieve
cost reduction and efficiency improvement while enhancing their core competitiveness.
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