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Abstract: This paper addresses the characteristics of the combustion system in a decomposition
furnace, introducing fuzzy control systems and neural network models. By leveraging the respective
advantages of both, the paper seamlessly integrates fuzzy control and neural networks to propose a
multi-variable fuzzy neural network-based combustion control optimization algorithm. Through
practical industrial applications, the paper demonstrates the combustion efficiency and optimization
effects of the system’s multi-objective scheduling during model operation, achieving precise control
of combustion in industrial furnaces. The results show that the use of this model can improve the
combustion efficiency of industrial furnaces by up to 18.4% compared to before its application. When
comparing the concentration ratios of fuel emissions using raw coal as an example, the algorithm
reduced emissions by 60.23% and 85.1%, respectively, significantly reducing energy consumption and
improving combustion efficiency. Additionally, when the decomposition rates were 65% and 100%,
respectively, the unit fuel consumption of total fuel was 3583.67 kJ/kg and 4572.82 kJ/kg, respectively.
Furthermore, for every 5% increase in system unit product fuel consumption, the increase was only
19.43 kJ/kg to 41.91 kJ/kg, indicating a decreasing trend in overall fuel consumption. The method
proposed in this paper provides efficient and reliable theoretical and technical support for industrial
practice.

Keywords: fuzzy control, neural network model, fuzzy neural network, industrial furnace, combus-
tion efficiency

1. Introduction

As environmental awareness and energy conservation consciousness continue to grow,
many large and medium-sized enterprises, such as steel and metallurgy, petrochemical,
and thermal power plants, have increasingly prioritized improving furnace thermal effi-
ciency, reducing energy consumption, lowering pollutant emissions, and protecting the
environment as key strategies for sustainable corporate development [1–4]. Combustion
devices and thermal engineering equipment such as rolling mill heating furnaces in the
steel industry and boilers in the power industry are major energy consumers across var-
ious industries [5,6]. Therefore, measuring and improving the combustion efficiency of
combustion devices and determining the optimal combustion point are of great importance.

For fuel-fired industrial furnaces, fuel combustion efficiency and fuel utilization effi-
ciency are two critical technical and economic indicators [7]. Fuel combustion efficiency
reflects the degree of fuel combustion, which can be evaluated by analyzing the composition
of combustion products to calculate parameters such as combustion completeness, residual
oxygen content, and excess air coefficient, thereby determining whether the furnace is
operating at optimal combustion conditions [8–10]. Fuel utilization efficiency reflects the
extent to which the heat released by fuel combustion is effectively utilized. The higher
the fuel utilization efficiency, the lower the fuel consumption or thermal consumption
of the furnace or kiln [11–13]. High utilization efficiency first requires high combustion
efficiency as a prerequisite [14]. Monitoring these two indicators enables furnaces and
kilns to operate in optimal conditions, achieving the objectives of optimized control and
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reduced energy consumption, which aligns with the evolving needs of refined management
in furnace and kiln operations [15,16]. Due to certain limitations in continuous detection
technology within current thermal engineering testing, to meet the refined management
requirements for dynamic management and real-time adjustment of industrial fuel furnace
control, further improvements have been made to existing combustion efficiency testing
equipment [17–19].

In the academic community, testing of fuel combustion efficiency and fuel utilization
efficiency in industrial furnaces and kilns primarily involves using flue gas analyzers
to conduct on-site testing of combustion product components, thereby optimizing and
regulating technical parameters such as combustion completeness, residual oxygen content,
and excess air coefficient. Among these, Paraschiv, et al. [20] designed a web application
capable of performing combustion calculations on flue gas components generated by solid
fuels in combustion chambers. By determining the oxygen and air volumes required for fuel
combustion at different stages, as well as the flue gas volume, this application ensures that
combustion equipment operates at optimal combustion efficiency. Xu et al. [21] conducted
a simulation study on furnace systems under ammonia-coal mixed combustion conditions,
finding that increasing the ammonia mixing ratio can reduce carbon dioxide emissions per
unit time while effectively improving combustion efficiency within the furnace. Madejski
et al. [22] proposed optimizing combustion efficiency within furnaces by monitoring and
controlling the distribution of fuel and air flow. Acoustic gas temperature measurement
systems and coal powder mass flow measurement systems were used as monitoring tools
to simulate the optimal operating conditions for furnace combustion.

Mayrhofer et al. [23] argued that controlling the gas-to-gas ratio within the furnace
is a key factor influencing combustion efficiency. By adjusting the gas flow rate and
combustion characteristics of the gas fuel mixture, combustion costs can be reduced and
combustion efficiency improved. Xiang et al. [24] developed a measurement device based
on the principle of a conductive dew point meter to measure the acid dew point under
different flue gas conditions, which helps control the flue gas temperature inside the
combustion furnace, thereby influencing combustion efficiency, electrostatic precipitator
efficiency, and desulfurization tower water consumption. Zaporozhets [25] A established a
fuel combustion control system based on broadband oxygen sensors. By measuring the
content of gases such as carbon monoxide during boiler operation under different loads,
optimization and commissioning work can be conducted to ensure the boiler operates
under optimal conditions. However, due to the limitations of flue gas testing technology, it
cannot meet customers’ demands for precise management of dynamic control and real-time
adjustment optimization of fuel industrial furnaces. Therefore, it is necessary to establish
relevant computational models based on actual measurement data to accurately assess the
combustion status of each combustion section.

The article first introduces the basic principles of fuzzy control and the fundamental
methods for designing fuzzy controllers. It then briefly outlines the process of constructing
a neural network model. Subsequently, by combining the advantages of fuzzy control and
neural networks, a fuzzy control model based on a multi-variable system is constructed.
By training the neural network using an appropriate number of optimized data sets with
sufficient incentive information as learning samples, a data sample set with certain learning
capabilities is obtained. Based on the accumulated experience, fuzzy control rules are
established, and corresponding fuzzy subsets are automatically generated to obtain the
actual output values of the industrial furnace combustion process. Finally, the application
effectiveness of the model is analyzed.

2. Construction of an industrial furnace combustion optimization model based on fuzzy
neural networks
2.1. Fuzzy neural network algorithm
2.1.1. Fuzzy control system

1) Determine the input and output variables of the fuzzy controller.
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The fuzzy controller [26] has three input variables: the error E, the change in E’, the
change in the given value, and the deviation change rate of E”. The number of input
variables is generally referred to as its dimension. The higher the dimension, the more ideal
the results achieved.

2) Knowledge base
The knowledge base includes all parameters related to fuzzy control rules and data

processing. The specific steps are as follows:
Input variables: For actual input variables, first use scale transformation to convert

the actual domain into the specified range.
Fuzzy partitioning of input and output spaces: Generally, the terms “large,” “medium,”

and “small” are used to describe the states of input and output variables.
Number of fuzzy divisions: This determines the maximum possible number of fuzzy

rules.
Change in error: When selecting terms to describe state variables, 0 is typically divided

into “positive zero” and “negative zero” to indicate whether the error value is increasing or
decreasing.

Defining the subset ranges for each fuzzy quantity: This involves estimating the trend
of the membership function curves for these subsets.

Selection of membership functions: For continuous regions, mathematical expres-
sions of functions are commonly used to describe them, typically including trigonometric
functions, trapezoidal functions, and Gaussian functions.

This paper employs the Gaussian function as the membership function, with the
following mathematical expression:

µA(x) = e
(x−c)2

2σ2 . (1)

In the equation, c is the central value of the membership function, and σ is the band-
width of the function curve.

This paper processes six months of production data from a unit decomposition furnace.
Due to the large input sample size, K-means clustering analysis is used for clustering. The
specific steps are as follows:

This iterative process continues until the convergence of the objective measure function
is achieved, at which point the iteration stops. The squared error criterion function is
generally used as the objective function:

E =
m

∑
i=1

∑
p∈ci

|p − ki|2. (2)

In the equation, E is the sum of the squares of the errors of all targets, p is a certain
point, ki represents the known data object, and is the center of gravity of cluster Ci.

3) Fuzzy reasoning
The fuzzy reasoning process is as follows:
Match degree: Compare the determined object with the first part of the fuzzy control

rule to obtain the match value of the object for each part of the rule.
Excitation intensity: Use fuzzy AND and OR logic symbols to fuse the match values

of each antecedent and calculate the excitation intensity of the rule’s antecedent within the
specified range.

Effective derived consequent MF: The effective incentive strength of the consequent
of the rule generates an efficient consequent. The efficient consequent represents how
incentive strength is propagated and applied within a fuzzy statement.

Total output: The total output is obtained by combining all effective consequents.
4) Determining the defuzzification method
The results obtained through fuzzy reasoning are still fuzzy quantities and cannot

directly control the controlled target. It is necessary to select an appropriate method to
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convert fuzzy segments into precise values, a process known as defuzzification. The
following three methods are commonly used:

Maximum membership degree method: If the membership function of the output
variable of the fuzzy set has only one maximum value, the element with the highest
membership degree is taken as the control variable; if the membership function of the
output has multiple extrema, the average of these extrema is taken as the control variable.

Median method: The quantity is divided into two parts, and the region where the
membership function curve changes and the membership function of the subset is selected.

MIN-MAX centroid method: The min algorithm is applied to each grammar rule, and
the max algorithm is applied to each rule. Finally, the weighted average of the output
quantities is calculated. This is the defuzzification operation. The method used in this
paper can obtain precise control quantities.

2.1.2. Neural network models

Common types of activation functions include linear functions, hard limit functions,
saturated linear functions, S-shaped functions, etc. The above different types of functions
are expressed by specific mathematical formulas as follows:

S =
n

∑
i=1

wijxi − T. (3)

If we consider the threshold T as the input X0, i.e., X0 = T, W0 = −1, the total
information received by neuron S is:

S =
n

∑
i=0

wijxi = XTW = WTX. (4)

The output is:
y = f (s). (5)

In the equation, y = f (·) is the transfer function.
Several transfer functions are briefly described as follows:
1) Unipolar threshold transfer function:

f (x) =
{

1, x ≥ 0,
0, x < 0.

(6)

Neurons with this form are called threshold neurons, which are the simplest type of
neuron structure. One of the most classic models, M-P, belongs to the category of threshold
neurons.

2) Bipolar threshold transfer function:

sgn(x) =
{

1, x ≥ 0,
−1, x < 0.

(7)

This is the most commonly used type in neurons, and many neural networks that
process discrete signals use symbolic functions as transfer functions.

3) Unipolar sigmoid transfer function, abbreviated as unipolar S-type function:

f (x) =
1

1 + e−x . (8)

4) Bipolar sigmoid transfer function, abbreviated as bipolar S-type function:

f (x) =
2

1 + e−x − 1 =
1 − e−x

1 + e−x . (9)
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The characteristic of unipolar and bipolar S-type functions is that the function itself
and its derivatives are continuous, so it is very convenient to handle.

5) Piecewise linear transfer function:

f (x) =


0, x ≤ 0,
cx, 0 < x ≤ xc,
1, xc < x.

(10)

The characteristic of this function is that within a certain range of values, its output
can be expressed using a function related to the input, which can be easily implemented
and is also called a linear function.

6) Probability-based transfer function
A neural network model using a probability-based transfer function does not have

a clear functional relationship between its input and output. Its probability is described
using a simple random function to determine whether its output state is 1 or 0. Let the
probability of the neural network output being 1 be:

P(1) =
1

1 + e−x/T . (11)

In the equation, T is referred to as the temperature parameter. Since the output of
neurons is similar to the Boltzmann distribution in thermodynamics, the neuron model is
also called the thermodynamic model.

2.1.3. Mathematical model

Fuzzy neural networks [27] are essentially a mathematical model theory that simulates
neurons. In subsequent research, scholars combined fuzzy control systems with neural net-
works to form neural network fuzzy controllers. The application advantage of this hybrid
system lies in its ability to leverage the strengths of both fuzzy control and neural network
algorithms simultaneously. A neural network mathematical model is a mathematical tool
that models neurons. This model consists of three basic elements: a set of connections, a
summation unit, and a non-pure activation function. Its specific form can be expressed
using the following equation:

µk =
p

∑
j=1

wijxj,vk = φ(vk) = µk − θk, yk = netk. (12)

In the equation, x1, x2, · · · xk represent the input signals; wk1, wk2, · · ·wkp are the
weights of neuron k; yk is the output of neuron k; φ(vk) is the activation function; θk is the
threshold; and the result of the linear combination is denoted as µk.

Combining fuzzy control systems with neural networks enables the data sample set
to have a certain learning ability, establishing fuzzy control rules based on accumulated
experience without the need for repeated reasoning and searching, and without requiring
extensive calculations. Instead, the desired results can be obtained through high-speed
parallel distributed computing.

To establish fuzzy relationship rules and train the network, it is often necessary to
input a large number of numerical samples into the fuzzy subsets. Let X1 and X2 be two
input values, and let the output value be Y. The entire fuzzy relationship rule can be
interpreted using X1, X2 and Y. Let the sample values of the kth input variable in the

network be denoted as Xk = [x0k, x1k · · · xnk](x0k = 1), then zjk = f (
n
∑wijxik) can be used

to represent the output quantity zjk of the jth layer network neuron. The above equation
denotes the connection weight between the jth neural unit and the ith output variable as
wij, and f (x) = 1/(1 + e − x).

Each output unit has a specific value corresponding to a certain output variable in
the network system. Therefore, the fuzzy subset of the output unit can be represented
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by a membership function in a multidimensional space. Based on this, all fuzzy control
syntax rules can be represented by corresponding input and output quantities. By training
the network using the BP algorithm, a one-to-one correspondence between output values
and input values is achieved. After learning and training, the entire network system
becomes a fuzzy rule association container for storage. When the network system receives
fuzzy-processed numerical signals as input, the output layer automatically generates a
corresponding fuzzy subset. After defuzzification of this subset, the actual output value
can be obtained.

2.2. Fuzzy neural network control model for multivariable systems
2.2.1. Fuzzy control model based on multivariable systems

This paper combines neural network theory with fuzzy control theory to propose a
fuzzy neural network control model for multi-variable systems and provides its modeling
method. By leveraging the learning capabilities of neural networks, the model is trained
using an appropriate number of optimized data sets with sufficient incentive information
as learning samples, thereby establishing the fuzzy neural network control model for the
system.

Let the system have τ inputs xi(i = 1, 2, · · · , r) and q outputs yj(j = 1, 2, · · · , q). The
fuzzy control model for any input xi(k) at time k is derived as follows.

For any fuzzy control rule Ri of xi, i.e.:
Ri : IF x1(k − 1) is An

1 , x1(k − 2) is A2
1, · · · , x1(k − n) is An

i , · · · ,
xr(k − 1) is Aµ

r , xr(k − 2) is Av2
r , · · · , xr(k − n) is Av

r ,
y1(k − 1) is Bl

1, y1(k − 2) is B2
1, · · · , y1(k − m) is Bm

1 , · · · ,
yq(k − 1) is Bu

q , yq(k − 2) is Bu2
q , · · · , yq(k − m) is Bu

q .

(13)

Then

x
′
i(k) =a

′
0 + a

′
11 · x1(k − 1) + a

′
12 · x1(k − 2) + · · ·+ a

′
1n · x1(k − n) + · · ·

+ a
′
r1 · xr(k − 1) + a

′
r2 · xr(k − 2) + · · ·+ a

′
rn · xr(k − n)

+ b
′
11 · y1(k − 1) + b

′
12 · y1(k − 2) + · · ·+ b

′
1m · y1(k − m) + · · ·

+ b
′
q1 · yq(k − 1) + b

′
q2 · yq(k − 2) + · · ·+ b

′
q1 · yq(k − m), (14)

where R
′

denotes the lth control rule (l = 1, 2, · · · , L; L is the total number of control rules);
A(1−r)

i , B(1−r)
j are fuzzy subsets appropriately defined on the input and output domains;

xi(k) is the ith input control variable at time k determined by the lth rule; ai
0, ai

i1∼1, bi
j1∼m

are the conclusion parameters to be determined and n, m are the input and output orders
of the model, respectively.

Let:
θr = [ a

′
0 a

′
11 a

′
12 · · · a

′
1n · · ·a′

r1 a
′
r2 · · · a

′
rn

b
′
11 b

′
12 · · · b

′
1m · · · b

′
q1 b

′
q2]

(15)

φ = [ 1 x1(k − 1) · · · x1(k − n) · · · xr(k − 1) · · · xr(k − n)
y1(k − 1) · · · y1(k − m) · · · yq(k − 1) · · · yq(k − m)]T

(16)

Eq. (13) can be rewritten as:
xi

i(k) = θr
i · φ. (17)
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If the fuzzy control model has L rules, then for a given set of input-output data φ, the
input control quantity xi(k)y is:

xi(k) =

L
∑

i=1
λi · xi

i(k)

L
∑

i=1
λi

=

L
∑

i=1
λi · θT

i · φ

L
∑

i=1
λi

. (18)

The weighting coefficient λi is:

λi =
r

∏
i=1

n

∏
j=1

µ
ij
i [xi(k − j)] ∧

q

∏
i=1

m

∏
j=1

µ
Bl j

i
[yi(k − j)], (19)

where “Π” and “Λ” denote fuzzy logical AND operations, i.e., minimum operations;
µ

ij
Ai
[xi(k − j)] denotes the membership function value of the fuzzy subset Aj for xi(k)− j),

and the meaning of µ
ij
B[yi(k − j)] is similar. Eq. (18) represents the fuzzy control model for

the input variable xi.

2.2.2. Mathematical modeling process

If θi in Eq. (18) can be determined, then the fuzzy control model can be established. The
learning ability of neural networks is used to determine θi, where ∑,×,∧, µ,÷ represent
the corresponding neural networks performing summation, multiplication, minimization,
membership function value calculation, and division operations, respectively. The learning
algorithm of the neural network is derived as follows.

Expanding Eq. (18) yields:

xi(k) = 1
L
∑

i=1
λi

[λ1θT
1 φ + λ2θT

2 φ + · · ·+ λLθT
2 φ]

= 1
L
∑

i=1
λi

[λ1λ2 · · · λi][θ
T
1 θT

2 · · · θ2
i ]

2 φ
(20)

Order:
Θ = [θL

2 θL
2 · · · θL

2 ]
T . (21)

Then Θ is:

Θ =


a1

0 a1
11 · · · a1

11 · · · a1
n b1

11 · · · b1
11 · · · b1

11
a2

0 a2
11 · · · a2

11 · · · a2
11 · · · a2

11 · · · b2
11 · · · b2

11
· · ·

aL
0 aL

11 · · · aL
11 · · · aL

11 · · · aL
n bL

11 · · · bL
11 · · · bL

11

 (22)

Let the cost function J be:

J =
1
2
[x̂i(k)− zi(k)]2, (23)

x̂i(k) is the actual input control quantity in the learning sample, and xi(k) is the control
quantity output by the neural network. The learning objective is to make xi(k) as close as
possible to x̂i(k), that is, to make J → min.

According to the first-order gradient algorithm, we have:

∂J
∂u′

0
=

∂J
∂xi(k)

· ∂xi(k)
∂u′

0
= −[x̂i(k)− xi(k)] ·

λi
L
∑

i=1
λi

, (24)
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∂J
∂u′

i′
=

∂J
∂xi(k)

· ∂xi(k)
∂u′

i′
= −[x̂i(k)− xi(k)] ·

λi
L
∑

i=1
λi

· zi(k − i
′
), (25)

∂J
∂b′

j′
=

∂J
∂xi(k)

· ∂xi(k)
∂b′

j′
= −[x̂i(k)− xi(k)] ·

λi
L
∑

i=1
λi

· yj(k − j
′
). (26)

Among them, i
′
= 1, 2, · · · , n; j

′
= 1, 2, · · · , m. Let:

∆xi(k) = x̂i(k)− xi(k), (27)

λ = [λ1λ2 · · · λL]
r. (28)

From equations (24) to (26), we obtain:

Θ = Θ0 + ∆Θ = Θ0 +
η · ∆xi(k)

L
∑

i=1
λ

· λ · φτ . (29)

In this case, η is the learning rate, and Θ0 is the initial value of Θ.
Eq. (29) is the network weight learning algorithm, which can also be regarded as the

identification algorithm for the conclusion parameters in the fuzzy control model.
If data sets corresponding to good system performance indicators are extracted from

the actual input and output data of the modeling object and used as learning samples to
train the neural network, then the model obtained after training is an optimized control
model, and the input control quantities generated by the neural network are optimized
control quantities.

3. Analysis of combustion efficiency and optimization results for industrial furnaces
and kilns
3.1. Analysis of industrial furnace combustion efficiency
3.1.1. Specific cases

This section uses actual operating data from a coal-fired industrial furnace at a certain
factory from May to July as an example. Experiments were conducted every Thursday for
three months, with five time intervals measured each time. The average values for each
group of experiments were calculated, resulting in data sets 1 to 5. The methods described
in this paper, along with the differential evolution algorithm and the non-dominated
sorting genetic algorithm (NSGA-II), were applied to the intelligent optimization process
of industrial furnace combustion efficiency. Combined with the current industrial furnace
intelligent optimization algorithm analysis system, the thermal efficiency of the industrial
furnace during the experimental period was analyzed. The combustion parameters of
the industrial furnace during the experimental period are shown in Table 1. The results
of the combustion efficiency optimization of the industrial furnace are shown in Table
2. The combustion efficiency of the industrial furnace increased after applying the three
methods. For example, for the 5th data group, the combustion efficiency of the proposed
method, the differential evolution algorithm method, and the NSGA-II method increased by
18.4%, 2.83%, and 0.42%, respectively, compared to the previous value (75.39%). Through
comparison, it can be seen that the proposed method significantly improves the combustion
efficiency of the industrial furnace, thus proving the effectiveness of this method for
optimizing combustion efficiency.

3.1.2. Analysis of the model’s raw coal consumption results

To verify the effectiveness of the method described in this paper in reducing energy
consumption, the coal consumption required to produce CO2 under hot start and cold
start conditions was calculated separately for brown coal, bituminous coal, and raw coal.
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Table 1. Combustion parameters of the experimental cycle

Data set Heat efficiency(%) Coal supply(t·h−1) Flow rate of a single wind(t·h−1) Combustion efficiency(%)
Group 1 93.09 15 54.15 75.43
Group 2 93.29 25 58.68 76.24
Group 3 92.75 35 64.33 75.24
Group 4 94.24 45 68.08 75.77
Group 5 94.35 55 75.43 75.39

Table 2. Results of combustion efficiency optimization of industrial furnace

Data set Methods in this paper(%) Differential evolution algorithm(%) NSGA-II(%)
Group 1 92.71 76.72 75.81
Group 2 92.98 76.62 77.13
Group 3 91.73 75.54 76.82
Group 4 93.72 77.45 76.13
Group 5 93.79 78.22 75.81

Each experiment was conducted five times, and the average value of the calculated results
was obtained. By comparing the data, the ability of each algorithm to reduce energy con-
sumption was determined. The experimental results for raw coal consumption under hot
start and cold start conditions are shown in Figures 1 and 2, respectively. The results show
that, when using the three types of coal, the industrial furnace’s CO2 production capacity
during cold start-up and hot start-up both achieve the lowest raw coal consumption using
the method proposed in this paper. Therefore, the method proposed in this paper can
effectively reduce energy consumption. As power plants demand lower raw material
costs, the application effects of the differential evolution algorithm and NSGA-II method
cannot achieve the optimal solution for reducing energy consumption, thereby proving the
superior application effectiveness of the method proposed in this paper.

Figure 1. Thermal start-up coal consumption

3.1.3. Analysis of pollutant emissions from optimized models

To determine the pollutant emissions generated by industrial furnace combustion
under different algorithms, three methods were used to calculate the pollutant emissions
produced by burning brown coal in industrial furnaces at different coal feed rates. The
pollutant emissions are shown in Table 3. It can be seen that the method proposed in this
paper results in the lowest pollutant emissions, while the other two methods yield higher
emissions. This is because the method proposed in this paper optimizes the ratio of coal
powder to air supply during the combustion process, thereby improving the combustion
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Figure 2. Cold start coal consumption

efficiency of the industrial furnace. Additionally, during the production process, the
algorithm proposed in this paper optimizes the parameters of various variables in the
combustion process of the industrial furnace. In summary, the method proposed in this
paper demonstrates a higher ability to reduce pollutant emissions.

Table 3. Pollutant discharge

Method Coal types Group 1 Group 2 Group 3 Group 4 Group 5
Methods in this paper Lignite 60.36 58.62 56.68 58.9 61.13

Soft coal 66.04 68.47 61.62 62.65 63.28
Raw coal 54.34 53.58 51.94 54.98 55.02

Differential evolution algorithm Lignite 86.98 87.86 87.94 88.73 89.92
Soft coal 92.32 91.82 92.27 92.12 92.85
Raw coal 84.36 86.83 86.71 89.12 85.38

NSGA-II Lignite 114.84 113.75 112.73 113.56 113.49
Soft coal 105.51 104.01 103.63 106.34 107.3
Raw coal 101.4 98.44 102.21 99.23 98.23

3.2. Scheduling Optimization Analysis
3.2.1. Analysis of overall system scheduling results

To verify the feasibility and rationality of the model, assume that the total input of raw
materials is 400 tons of limestone, the production cycle is 23 hours, and the objective is to
minimize fuel consumption. The mass of CO2 gas in the gas holder is V1,t, CO2 inlet flow
rate to the lime kiln Vin

2,1, CO2 outlet flow rate from the lime kiln Vout
2,1 , CO2 recovery rate

V3,t, gas inlet flow rate to the heating furnace V4,t, and lime stone mass inside the furnace
Gz.

The overall scheduling results for the system are shown in Figure 3. During cycles
1 to 6, the lime kiln is in the charging phase, during which the total mass of limestone
inside the kiln continuously increases until it reaches the target discharge quantity of 400
tons. According to the principles of energy conservation and mass conservation, the flow
rate of hot CO2 entering and exiting the kiln continuously increases to meet the gradually
increasing heat load from calcium carbonate decomposition inside the kiln. Similarly, the
amount of fuel required for the heating furnace to maintain the system’s operation also
increases accordingly. Due to the limited CO2 generated during the initial operation phase,
the CO2 mass in the gas holder remains stable to ensure the system’s normal operation.
From cycles 7 to 17, the lime kiln is in the saturation phase, meaning that no additional
calcium carbonate raw material is added to the kiln during this phase, and the thermal load
inside the kiln gradually decreases from its peak. From cycles 18 to 23, the lime kiln is in the
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discharge phase. As calcium oxide products continue to flow out, the calcination reaction
of calcium carbonate inside the kiln nears completion, resulting in a further reduction in
the required amount of hot CO2, and consequently, the fuel required for the lime kiln also
decreases accordingly.

Figure 3. Overall scheduling results of the proposed system

When the optimization objective is to minimize the recovery volume, the optimized
overall scheduling plan results are shown in Figure 4. When the objective is to maximize
CO2 recovery, the gas mass in the gas holder is significantly reduced compared to the
results in Figure 3, as this reduction is transferred to the CO2 recovery process.

Figure 4. Results of the optimized overall scheduling scheme

3.2.2. Analysis of factors affecting system operating energy consumption

This section calculates the optimal production scheduling schemes obtained by the
algorithm at target limestone decomposition rates of 65%, 70%, 75%, 80%, 85%, 90%, 95%,
and 100%, and compares the differences in fuel consumption required at these decompo-
sition rates. The system fuel allocation schemes under different decomposition rates are
shown in Figure 5. The fuel input quantities corresponding to different decomposition
rates are basically the same in the first six cycles. Starting from the seventh cycle, gradual
differentiation begins to occur. The higher the decomposition rate, the longer the calcium
carbonate remains in the furnace, resulting in a flatter decline in fuel consumption and
higher overall energy consumption. When calcining 3.6×105 kg of limestone, with a de-
composition rate of 65%, the total production cycle is 5 hours, corresponding to a total fuel
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consumption of 14,593.77 m³ of gas, with a unit fuel consumption of 3,583.67 kJ/kg; When
the decomposition rate is set to 100%, the total production cycle is 24 hours, corresponding
to a total fuel consumption of 17,007.94 m3, with the unit fuel consumption increasing
to 4,572.82 kJ/kg. As the limestone decomposition rate increases from 65% to 100%, the
unit fuel consumption per product increases by 41.91 kJ/kg, 39.37%, 26.22 kJ/kg, 27.83
kJ/kg, 19.43 kJ/kg, and 28.34 kJ/kg for each 5% increase, with the overall trend of fuel
consumption increase decreasing.

Figure 5. Fuel distribution scheme of the system at different decomposition rates

Based on the above analysis, the ratio of the total limestone feed rate to the rated
capacity of the lime kiln is defined as λ. A higher λ value indicates a greater extent to which
the target calcium carbonate production exceeds the rated capacity of the kiln. The changes
in fuel consumption per unit under different λ conditions are shown in Figure 6. It can be
observed that, under the same decomposition rate, as λ gradually increases from 1 to 2, the
unit fuel consumption per product of the system shows a slow increase. Further analysis
reveals that, at a decomposition rate of 65%, when λ is 1, the system’s unit fuel consumption
is 3,583.67 kJ/kg, and when λ is 2, the system’s unit fuel consumption increases to 3,696.41
kJ/kg, representing a growth rate of 3.15%. When λ is 1, if the decomposition rate is
increased from 65% to 100%, the unit fuel consumption increases from 3,583.67 kJ/kg
to 4,572.82 kJ/kg, with a growth rate of 27.6%. This indicates that, compared to λ, the
decomposition rate has a greater impact on operational energy consumption. Therefore,
in actual production decision-making, companies should make comprehensive decisions
based on their own needs, balancing product quality (decomposition rate) and operational
energy consumption costs.
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Figure 6. Variation of unit fuel consumption under different λ scenarios

3.2.3. Analysis of the overall scheduling results of the system’s multiple objectives

1) Overall system dispatch results with the goal of minimizing unit energy consump-
tion

The unit energy consumption for this production plan is 3583.67 kWh·t-1. During any
t-period within the entire production cycle, the mass flow rate of pyrolysis furnace gas
in the gas storage tank is V1,t, the outlet flow rate from the preheated pyrolysis furnace is
V2,t, and the mass flow rate entering the preheated pyrolysis furnace is V3,t. the mass flow
rate of pyrolysis furnace gas used for resource recovery is V4,t, the current supplied to the
mineral electric furnace is It, and the mass flow rate of cold pellets supplied is G1,t.

The overall scheduling results of the system with the objective of minimizing specific
power consumption are shown in Figure 7. During cycles 1 to 8, the pyrolysis furnace is in
the feeding, pellet preheating pyrolysis, and discharging stages, while the mineral electric
furnace is in the discharging stage. Due to the limited amount of furnace gas generated in
the pyrolysis furnace during the initial operation phase, the furnace gas in the gas storage
tank needs to be continuously consumed to maintain stable calcium carbide production.
Correspondingly, during cycles 6 to 11, as the feed rate in the mineral furnace has peaked
and is rapidly decreasing, the furnace no longer requires a higher current to maintain high
power.

Figure 7. The scheduling result aims at minimizing the power consumption per unit
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2) Overall system scheduling results with maximum output as the objective
At the same time, for the production scheduling model of the mixed preheated pel-

letized ore hot blast stove, this chapter solves the model with maximum calcium carbide
output as the objective. The overall system scheduling results with maximum output as the
objective are shown in Figure 8. The scheduling scheme corresponding to the objective of
maximizing production volume has an average feed rate in the first and second cycles that
far exceeds that of the production scheme targeting minimum unit power consumption.
When considering all production cycles, its average feed rate is also greater than the latter.
Therefore, its power supply reaches a peak in the third cycle and remains at a high level
thereafter, only decreasing after the end of feed supply in the eighth cycle. Therefore, in
actual production, enterprises should pay attention to the balance between unit electricity
consumption and calcium carbide production when formulating production plans. It is
recommended to use multi-objective optimization methods to address this issue.

Figure 8. The overall scheduling result of the system with the goal of maximum output

4. Conclusion

This paper proposes a fuzzy neural network control model for multi-variable systems
by combining the advantages of fuzzy control and artificial neural networks, providing
decision-making and control for improving the combustion efficiency of industrial furnaces.

The fuzzy neural network control model for multi-variable systems proposed in
this paper can improve the combustion efficiency of industrial furnaces, reduce the con-
centration of emissions, and decrease energy consumption, thereby achieving optimized
management and control of the combustion process in industrial furnaces. When the fuel
decomposition rate increases from 78% to 100%, the growth rate of unit fuel consumption
decreases, indicating the model’s effective application. Additionally, in actual produc-
tion, this paper recommends that enterprises consider the balance between unit electricity
consumption and calcium carbide production when formulating production plans.
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