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Abstract: This study presents necessary conditions for the existence and sufficient conditions for the
stability or instability of the static menisci (liquid bridges) appearing in the single crystal tube growth
from the melt, of predetermined sizes, by using the edge-defined-film-fed (EFG) growth method.
The cases when the contact angle and the growth angle verify the inequality 0 < αc < π

2 − αg or
π
2 > αc >

π
2 − αg are treated separately. Experimentally, only static menisci (liquid bridges) which

verifies the necessary condition of existence and the sufficient conditions of stability can be created;
static menisci (liquid bridges) which does not verify both of these conditions, exist only as results of
computation, because in reality (experiment) they collapse. The results of this study is significant for
single crystal tube growth from melt, with prior given macroscopic dimensions, using prior given
specific equipment. That is because the obtained inequalities represent limits for what can and cannot
be achieved experimentally. Numerical illustrations are given for Si tube, and InSb tube.

Keywords: existence, static stability, meniscus, thin tube growth, edge-defined-film-fed-growth

1. Introduction

The growth of silicon tubes by the edge-defined film-fed growth (E.F.G.) process
was first reported by Erris et al. [1]. In [1] a theory of tube growth by the E.F.G. process
is developed to show the dependence of tube wall thickness on the growth variables.
The theory uses approximations reported in [2,3], and it has been shown to be a useful
tool for understanding the feasible limits of wall-thickness control. A more accurate
predictive model would require an increase of the acceptable tolerance range introduced by
approximation. Later, the heat flow in a tube growth system was analyzed in [4–13]. The
state of the art at the time 1993–1994, concerning the calculation of the meniscus shape in
general in the case of growth by the E.F.G. method, is summarized in [14]. According to
[14], for the general differential equation describing the free surface of a liquid meniscus,
possessing axial symmetry, there is no complete analysis and solution. For the general
equation only numerical integrations were carried out for a number of process parameter
values that were of practical interest at the moment. The authors of [15,16] consider
automated crystal growth processes based on weight sensors and computers. They give an
expression for the weight of the meniscus, contacted with crystal and shaper of arbitrary
shape, in which there are two terms related to the hydrodynamic factor. In [17] it is shown
that the hydrodynamic factor is too small to be considered in automated crystal growth.
In [18] a theoretical and numerical study of meniscus dynamics, under symmetric and
asymmetric configurations, is presented. A meniscus-dynamics model is developed to
consider meniscus shape and its dynamics, heat and mass transfer around the die top and
meniscus. Analysis reveals the correlations among tube thickness, effective melt height,
pull rate, die-top temperature, and crystal environmental temperature. In [19] the effect
of the controllable part of the pressure difference on the free-surface shape of the static
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meniscus is analyzed for the tube growth by the E.F.G. method for materials for which
0 < αc < π/2, 0 < αg < π/2, and αc > π/2− αg, and in [20] a similar analysis is presented
for materials for which π/2 > αc > π/2 − αg.

Tube-shaped single crystals are finding applications in medical devices due to their
unique properties. Specifically, they are used in ultrasonic transducers, where their piezo-
electric properties enable high-frequency imaging and therapy. These crystals, often made
of materials like PMN–PT or PIN–PMN–PT, offer superior performance compared to tradi-
tional materials, leading to advancements in medical imaging and diagnostics. Tube-shaped
single crystals, like YAG:Ce single crystals, are used as scintillators in radiation imaging
sensors, producing high-quality images. PMN–PT single crystals, known for their piezo-
electric properties, are used in ultrasonic transducers for both diagnostic and therapeutic
ultrasound applications. These crystals can be fabricated into phased arrays for 3D and 4D
imaging, offering enhanced imaging capabilities.

The imaging and surgical ecosystem considered here spans illumination, access, ther-
apy, and diagnostics. A robust YAG:Ce single crystal light source enables ultra-high-
efficiency illumination for minimally invasive optics (Fig. 1), which integrates with the
endoscope–camera–video chain and the laparoscope for in-body visualization (Figs. 5
and 6). On the therapeutic side, ultrasonic vessel sealing and dissection support precise
hemostasis in soft-tissue surgery (Fig. 2), while 3D ultrasound approaches are being ex-
plored for treating neurological diseases (Fig. 3). For diagnostic imaging fundamentals,
a representative linear-array scan demonstrates beamforming and resolution trade-offs
(Fig. 4), and two clinical-grade platforms—the Ecograf Acuson Origin and the Ecograf
Acuson Sequoia—illustrate modern system implementations across workflows (Figs. 7 and
8).

Figure 1. Robust YAG:Ce single crystal for ultra-high efficiency laser lighting

Figure 2. Ultrasoning vessel sealing and dissection
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Figure 3. Treating neurological diseases with 3D ultrasound

Figure 4. A medical ultrasound linear array scan

Figure 5. Endoscope–camera–video

Figure 6. Laparoscope
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Figure 7. Ecograf Acuson Origin

Figure 8. Ecograf Acuson Sequoia

This study presents necessary conditions for the existence and sufficient conditions for
the stability or instability of the static menisci (liquid bridges) appearing in the single-crystal
tube growth from the melt, of predetermined sizes, by using the edge-defined film-fed
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(E.F.G.) growth method. The results are significant for single-crystal tube growth from melt,
with prior given macroscopic dimensions, using prior given specific equipment.

2. The free surfaces equations and the pressure differences

At the beginning is important to note is that in case of tube the meniscus has two
free surfaces one inner free surface and one outer free surface. The free surfaces of the
static meniscus, in single crystal growth by EFG method, in hydrostatic approximation are
described by the Young-Laplace capillary equation [21]:γ

(
1

R1i
+ 1

R2i

)
= Pai − Pmi,

γ
(

1
R1e

+ 1
R2e

)
= Pae − Pme,

(1)

here, γ is the melt surface tension; 1
R1i

, 1
R2i

denote the main normal curvatures of the

meridian arc of the inner free surface and 1
R1e

, 1
R2e

denote the main normal curvatures of the
meridian arc of the outer free surface; Pai and Pae is the pressure above the inner and the
outer free surface respectively, equal to the pressure of the gas flow introduced in the tube
and in the furnace respectively [21], denoted by pgi

(
Pai = pgi

)
and pge

(
Pae = pge

)
. The

pressures Pmi and Pme under the inner and the outer free surface respectively are equal to
−ρg (zi + H) and −ρg (ze + H) respectively (the direction of Oz is upwards, see Figures
9 and 10). ρ denotes the density of the melt and g the gravity acceleration; H denotes
the height difference between the top of the shapers and the melt level in crucible — the
distance between the shapers top level and the crucible melt level. H is positive when the
crucible melt level is under the shapers top level and it is negative when the shapers top
level is under the crucible melt level (see Figures 9 and 10). The meridian curve of the inner
free surface of meniscus is denoted by zi(r) and that of the outer free surface is denoted by
ze(r) (see Figures 9 and 10).

Figure 9. Convex axisymmetric free surface
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Figure 10. Concave axisymmetric free surface

In hydrostatic approximation the Young–Laplace capillary surface equations (1) can
be written as: γ

(
1

R1i
+ 1

R2i

)
= ρg zi − pi,

γ
(

1
R1e

+ 1
R2e

)
= ρg ze − pe,

(2)

respectively, where {
pi = − pgi − ρg H ,
pe = − pge − ρg H ,

(3)

respectively.
To calculate the meniscus surface shape and size in hydrostatic approximation is

convenient to express the Young–Laplace Eqs. (2) in differential form with respect to an
axisymmetric reference frame (see Figure 9 and Figure 10) in terms of the meridian curves
zi(r) and ze(r) respectively. According to [20,21] these equations in terms of the inner and
outer meridian curves are:

z′′i =
ρg zi − pi

γ

[
1 + (z′i)

2] 3
2 − 1

r
[
1 + (z′i)

2] z′i, for 0 < Rgi ≤ r ≤ ri, (4)

where ri > 0 is the single crystal tube inner radius and Rgi (Rgi > ri) is the shaper inner
radius,

z′′e =
ρg ze − pe

γ

[
1 + (z′e)

2] 3
2 − 1

r
[
1 + (z′e)

2] z′e, for 0 < re < r < Rge, (5)

where re > 0 is the single crystal tube outer radius and Rge (re < Rge) is the shaper outer
radius. It is assumed that the above radii verify: Rgi < ri < re < Rge.

Remark that the Young–Laplace capillary Eqs. (4), (5) are the Euler equations of the
free energy of the inner and outer melt columns respectively, i.e. they are the first order
necessary conditions of minimum of functional Ii(z) and Ie(z) defined by:

Ii(zi) =
∫ ri

Rgi

{
γ
√

1 + (z′i)
2 +

1
2

ρg z2
i − pizi

}
r dr, zi(ri) = hi, zi(Rgi) = 0, (6)
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Ie(ze) =
∫ Rge

re

{
γ
√

1 + (z′e)2 +
1
2

ρg z2
e − peze

}
r dr, ze(re) = he, ze(Rge) = 0, (7)

respectively. This means that the Young–Laplace Eqs. (4), (5) can be obtained starting from
the general Euler equations:

d
dr

(
∂Fi
∂z′i

)
− ∂Fi

∂zi
= 0,

d
dr

(
∂Fe

∂z′e

)
− ∂Fe

∂ze
= 0, (8)

which are the first order necessary conditions of minimum of the functionals, Ii(zi), Ie(ze),
and taking

Fi(r, zi, z′i) =
{

γ
√

1 + (z′i)
2 +

1
2

ρg z2
i − pizi

}
r, (9)

Fe(r, ze, z′e) =
{

γ
√

1 + (z′e)2 +
1
2

ρg z2
e − peze

}
r. (10)

As the Young–Laplace equations in hydrostatic approximation (4) and (5) are second
order ordinary differential equations, formulation of boundary conditions requires assign-
ment of two boundary conditions; one of the melt crystal interface, the second one on the
melt and shaper interface. These conditions are:

z′i(Rgi) = tan(αc), z′i(ri) = tan
(π

2
− αg

)
, zi(Rgi) = 0, zi(ri) = hi, (11)

where αg is the growth angle, αc is the contact angle between the meniscus free surface and
the edge of the inner shaper top and hi is the height of the meniscus inner surface; and

z′e(Rge) = − tan(αc), z′e(re) = − tan
(π

2
− αg

)
, ze(Rge) = 0, ze(re) = he, (12)

where he is the height of the meniscus outer surface.

3. Existence, Stability or Instability of a meniscus having convex inner and outer free
surface

The inner and outer free surface of a meniscus is convex if z′′i (r) > 0 and z′′e (r) > 0 for
Rgi ≤ r ≤ ri and re < Rge, respectively.

Remark first that in case of a meniscus having convex inner and outer surfaces the
functions z′i(r), z′e(r) are increasing. For the inner meridian curve this means that the
angle between the tangent line to the inner curve zi(r), in every point r, and the Or axis,
αi(r) = arctan z′i(r), is increasing. In particular, it follows that αi(Rgi) < αi(ri). Since
αi(Rgi) = αi and αi(ri) =

π
2 − αg, we obtain inequality π

2 − αg > αi, or αg > αc > 0. (see
Figure 9).

For the outer surface meridian curve convexity means that the angle between the
tangent line to the meridian curve ze(r), in every point r, and the Or axis, αe(r) =
− arctan z′e(r), is decreasing. In particular, it follows that αe(Rge) < αe(re). Since αe(Rge) =
αe and αe(re) =

π
2 − αg, we obtain inequality π

2 − αg > αe, or αg > αc > 0 (see Figure 9).
Therefore if the inner and outer free surface of a meniscus is convex then π

2 − αg > αc.
Using the Young-Laplace capillarity Eqs. (4) and (5) and conditions (11) and (12)

respectively in [20] the following result was established:
If pi and pe there exists a solution zi(r) of Eq. (4) and a solution ze(r) of Eq. (5)

respectively, which are convex meridian curves and describes the inner and outer free
surfaces of a static meniscus respectively, then the following inequalities hold:

−γ
π

X
(ag + αc)

Rgi
cos αc −

Y
Rgi

sin αc

≤ pi ≤ −γ
π

X
(ag + αc)

ri − Rgi
sin αg + (ri − Rgi)× ρ × g × X tan

(π

2
− αg

)
=

Y
X

sin αc, (13)
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−γ
π

X
(ag + αc)

Rge
cos αc +

Y
Rge

sin αc

≤ pe ≤ −γ
π

X
(ag + αc)

Rge − re
sin αg + (Rge − re)× ρ × g × X tan

(π

2
− αg

)
=

Y
X

cos αg.

(14)

Therefore in case of the existence of a computed static meniscus for which the inner
and outer surfaces are convex then the values of the pressure differences pi = −pgi − ρ ×
g × H and pe = −pge − ρ × g × H has to be in the interval

[
Lle f t

i , Lright
i

]
and

[
Lle f t

e , Lright
e

]
respectively where:

Lle f t
i =− γ × π

X
(ac + ag)

ri − Rgi
× cos αc −

Y
Rgi

× cos αg, (15)

Lright
i =− γ × π

X
(ac + ag)

ri − Rgi
× sin αg + (ri − Rgi)× ρ × g × tan

(π

2
− αg

)
− Y

ri
sin αc, (16)

Lle f t
e =− γ × π

X
(ac + ag)

Rge − re
× cos αc +

Y
Rge

× sin αc, (17)

Lright
e =− γ × π

X
(ac + ag)

Rge − re
× sin αg + (Rge − re)× ρ × g × tan

(π

2
− αg

)
+

Y
re

cos αg. (18)

For the practical existence of a static meniscus having the inner and outer free sur-
faces convex numerical computations were performed for Si thin tube growth using
the following numerical data: Rgi = 4.2 × 10−3 [m], ri = 4.35 × 10−3 [m], Rge = 4.8 ×
10−3 [m], re = 4.65 × 10−3 [m], αc = 0.523 [rad]; αg = 0.191986 [rad] ρ = 2.5 × 103 [ kg

m3 ], γ =

7.2 × 10−1 [N
m ], g = 9.81 [m

s2 ].
Computation shows that for the considered numerical data the limits of pressure

differences are:

Lle f t
i = −3591.47601[Pa] and Lright

i = −847.5686305[Pa], (19)

Lle f t
e = −3483.843734[Pa] and Lright

e = −617.6517706[Pa]. (20)

Therefore inequalities (13) and (14) becomes:

−3591.47601[Pa] ≤ pi ≤ −847.5686305[Pa], (21)

and
−3483.843734[Pa] ≤ pe ≤ −617.6517706[Pa], (22)

respectively.
In the following we will illustrate first the theoretical (computational) existence/

nonexistence of static meniscus in case of Si tube having convex inner and outer surfaces.
The meridian curve of the inner free surface of convex meniscus can be obtained by

solving the following initial value problem

dzi
dr

= tan αi,
dαi
dr

=
ρgzi − pi

γ
× tan αi −

1
r
× tan αi, zi(0.0042) = 0, αi(0.0042) = 0.523,

(23)
for different values of pi ∈ [−3591.47601, 847.5686305] [Pa].
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The meridian curve of the outer free surface of convex meniscus can be obtained by
solving the following initial value problem

dze

dr
= − tan αe,

dαe

dr
=

pe − ρgze

γ
× 1

cos αe
× tan αe, ze(0.0048) = 0, αe(0.0048) = 0.523,

(24)
for different values of pe ∈ [−3483.843734, −617.6517706] [Pa].

In this way by computation the inner and outer surfaces meridian curves of a convex
static Si meniscus is obtained for pi = −2370 [Pa] and pe = −1650 [Pa] respectively. The
meridian curves zi(r) and ze(r) with the variation of the angles αi, αe are represented in
Figures 11-14.

Figure 11. Convex inner meridian zi(r)

Figure 12. Corresponding αi(r)

Figure 13. Convex outer meridian ze(r)
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Figure 14. Corresponding αe(r)

The static stability of the inner and outer free surfaces of an existing convex static
meniscus it should be distinguished from the dynamic stability of the crystallization process
considered in [17]–[21].

For statically stable convex meniscus, indispensable (necessary) first order conditions
and also second order sufficient conditions for the minimum of functional (6) and (7) should
be satisfied.

The first order necessary conditions are the Euler equations which leads to the Young-
Laplace capillarity Eqs. (4) and (5).

The second order sufficient conditions for the minimum of functional (6) and (7) are
the Legendre condition and the Jacobi condition [22].

The Legendre condition for the inner and outer surfaces are:

∂2Fi

∂z′2i
> 0, and

∂2Fe

∂z′2e
> 0, (25)

respectively.

Computing
∂2Fi

∂z′i∂z′i
and

∂2Fe

∂z′e∂z′e
we find

∂2Fi
∂z′i∂z′i

=
rXY

(1 + (z′i)
2)3/2 > 0, and

∂2Fe

∂z′e∂z′e
=

rXY
(1 + (z′e)2)3/2 > 0,

respectively.
Therefore, the Legendre conditions are verified for the inner and outer free surfaces.

The Jacoby condition concern the so-called Jacoby equation:[
∂2F

∂z′∂z′
− d

dr

(
∂2F

∂z′∂z′

)]
× η − d

dr

[
∂2F

∂z′∂z′
× η′

]
= 0. (26)

In case of the functional (6) and (7).
Eq. (26) become:

d
dr

[
rXY

(1 + (z′i)
2)3/2 η′

i

]
− g × ρ × r × ηi = 0, (27)

and
d
dr

[
rXY

(1 + (z′e)2)3/2 η′
e

]
− g × ρ × r × ηe = 0, (28)

respectively.
Jacobi requirement of stability condition is that the solution of Eqs. (27) and (28) which

verifies the initial condition ηi(Rgi) = 0 and η′
i (Rgi) = 1 vanishes at most ones on the

interval [Rgi, ri] and ηe(re) = 0, η′
e(re) = 1 vanishes at most ones on the interval [re, Rge]

respectively.
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According to [22] for that it is sufficient to find Sturm type upper bounds for Eqs. (27)
and (28).

Remark that for the coefficients of (27) and (28) the following inequalities hold:

rXY
(1 + (z′i)

2)3/2 > Rgi × X × (sin αg)
3, and − g × ρ × r < −g × ρ × Rgi, (29)

and

rXY
(1 + (z′e)2)3/2 > Rge × X × (cos αc)

3, and − g × ρ × r < −g × ρ × re, (30)

respectively.
Hence

(θ′i × Rgi × X × (sin αg)
3)′ − g × ρ × X × Rgi = 0 or θ′′i =

g × ρ

γX(sin αg)3 , (31)

is a Sturm-type upper bound for (27).

(θ′e × re × X × (cos αc)
3)′ − g × ρ × X × re = 0, or θ′′e =

g × ρ

γX(cos αc)3 , (32)

is a Sturm–type upper bound for (28).
An arbitrary solution of (31) is given by

θi(r) = Ai × sin(ωi × r + φi), (33)

where Ai and φi are real constants and

ω2
i =

g × ρ

γX(sin αg)3 , (34)

and an arbitrary solution of (32) is given by

θe(r) = Ae × sin(ωe × r + φe), (35)

where Ae and φe are real constants and

ω2
e =

g × ρ

γX(cos αc)3 . (36)

The half period of a non-zero solution θi(r), defined by (33), is given by

π

ωi
= π ×

√
γX(sin αg)3

g × ρ
. (37)

If the half period given by (37) verifies inequality

ri − Rgi < π ×

√
γX(sin αg)3

g × ρ
, (38)

then the function θi(r) defined by (33) vanishes at most ones on the interval [Rgi, ri]
Hence, according to [10] the solution of Jacobi Eq. (27) which verifies ηi(Rgi) = 0 and

η′
i (Rgi) = 1 has at most one zero on the interval [Rgi, ri]. Therefore, the stability condition

of Jacobi is verified for the inner free surface.
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The half period of a non-zero solution θe(r), defined by (35), is given by

π

ωe
= π ×

√
γX(cos αc)3

g × ρ
. (39)

If the half period given by (39) verifies inequality

Rge − re < π ×

√
γX(cos αc)3

g × ρ
, (40)

then the function θe(r) defined by (35) vanishes at most ones on the interval [re, Rge]
Hence, according to [10] the solution of Jacobi Eq. (28) which verifies ηe(re) = 0 and

η′
e(re) = 1 has at most one zero on the interval [re, Rge]. Therefore, the stability condition of

Jacobi is verified for the outer free surface.
In case of convex tube, the static stability of the inner and outer free surfaces is:

ri − Rgi < π ×

√
γX(sin αg)3

g × ρ
, and Rge − re < π ×

√
γX(cos αc)3

g × ρ
. (41)

Inequalities (41) represent a sufficient condition of stability for a static convex meniscus
which exist theoretically for a certain value of the pressure differences pi, pe. Note that
inequalities (41) is not a necessary condition of stability i.e. violation of one or both
inequalities not imply instability.

For find sufficient condition concerning instability the Jacobi requirement of instability
condition has to be proven. This condition for the inner surface is: solution of Eq. (27)
which verifies the initial condition ηi(Rgi) = 0 and η′

i (Rgi) = 1 vanishes at least twice on
the interval [Rgi, ri]. For the outer surface is: solution of Eq. (28) which verifies the initial
condition ηe(re) = 0, η′

e(re) = 1 vanishes at least twice on the interval [re, Rge].
According to [22] for that it is sufficient to find Sturm type lower bounds for Eqs. (27)

and (28).
Remark that for the coefficients of (27) and (28) the following inequalities hold:

rXY
(1 + (z′i)

2)3/2 < Rgi × X × (cos αc)
3, and − g × ρ × r > −g × ρ × ri, (42)

and

rXY
(1 + (z′e)2)3/2 < Rge × X × (sin αg)

3, and − g × ρ × r < −g × ρ × Rge, (43)

respectively.
Hence

(θ′i × ri × X × (cos αc)
3)′ − g × ρ × X × ri = 0, or θ′′i =

g × ρ

γX(cos αc)3 , (44)

is a Sturm–type lower bound for (27), and

(θ′e × Rge × X × (sin αg)
3)′ − g × ρ × X × Rge = 0, or θ′′e =

g × ρ

γX(sin αg)3 , (45)

is a Sturm–type lower bound for (28).
An arbitrary solution of (44) is given by

θi(r) = Ai × sin(ωi × r + φi), (46)

where Ai and φi are real constants and
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ω2
i =

g × ρ

γX(cos αc)3 , (47)

and an arbitrary solution of (45) is given by

θe(r) = Ae × sin(ωe × r + φe), (48)

where Ae and φe are real constants and

ω2
e =

g × ρ

γX(sin αg)3 . (49)

The period of a non-zero solution θi(r), defined by (33), is given by

2π

ωi
= 2 × π ×

√
γX(cos αc)3

g × ρ
. (50)

If the half period given by (50) verifies inequality

2π

ωi
= 2 × π ×

√
γX(cos αc)3

g × ρ
< ri − Rgi, (51)

then the function θi(r) defined by (46) vanishes at least twice on the interval [Rgi, ri].
Hence, according to [10] the solution of Jacobi Eq. (27) which verifies ηi(Rgi) = 0 and

η′
i (Rgi) = 1 has at least two zero on the interval [Rgi, ri]. Therefore, the instability condition

of Jacobi is verified for the inner free surface.
The period of a non-zero solution θe(r), defined by (48), is given by,

2π

ωe
= 2 × π ×

√
γX(sin αg)3

g × ρ
. (52)

If the period given by (52) verifies inequality

2π

ωe
= 2 × π ×

√
γX(sin αg)3

g × ρ
< Rge − re, (53)

then the function θe(r) defined by (48) vanishes at least twice on the interval [re, Rge]
Hence, according to [10] the solution of Jacobi Eq. (28) which verifies ηe(re) = 0 and

η′
e(re) = 1 has at least two zero on the interval [re, Rge]. Therefore, the instability condition

of Jacobi is verified for the outer free surface.
In case of convex meniscus, the static instability conditions of the inner and outer free

surfaces are:

2 × π ×

√
γX(cos αc)3

g × ρ
< ri − Rgi, and 2 × π ×

√
γX(sin αg)3

g × ρ
< Rge − re. (54)

Inequalities (54) represent a sufficient condition of instability for a static convex menis-
cus which exist theoretically for a certain value of the pressure differences pi, pe. Note that
inequalities (54) are not a necessary conditions of instability i.e. violation of one or both
inequalities not imply stability.

For the considered Si tube the sufficient conditions of stability of the inner and outer
surfaces are:

0.00015 = ri − Rgi < π ×

√
γX(sin αg)3

g × ρ
= 0.001418760703, (55)
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0.00015 = Rge − re < π ×

√
γX(cos αc)3

g × ρ
= 0.01372564021. (56)

Since inequalities (55) and (56), are valid the inner and outer surfaces of the static
convex Si meniscus are stables.

The sufficient condition of instability of the inner and outer surfaces are:

0.00015 = ri − Rgi > 2 × π ×

√
γX(cos αc)3

g × ρ
= 0.02745128041, (57)

0.00015 = Rge − re > 2 × π ×

√
γX(sin αg)3

g × ρ
= 0.002837521406. (58)

Since inequalities (57) and (58), are false for the inner and outer surfaces of the static
convex Si meniscus the instability criteria (54) cannot be applied.

4. Existence, Stability or Instability of a meniscus having concave inner and outer free
surface

The inner and outer free surface of a meniscus is concave if z′′i (r) < 0 and z′′e (r) < 0
for Rgi ≤ r ≤ ri and re < r < Rge respectively.

Remark first that in case of a meniscus having concave inner and outer surfaces the
functions z′i(r), z′e(r) are decreasing. For the inner meridian curve this means that the
angle between the tangent line to the meridian curve zi(r), in every point r, and the Or
axis, αi(r) = arctan z′i(r), is decreasing. In particular, it follows that αi(Rgi) > αi(ri). Since
αi(Rgi) = αc and αi(ri) = π

2 − αg, we obtain inequality π
2 − αg < αc, or αg < αc > 0.

(see Figure 10). For the outer surface meridian curve convexity means that the angle
between the tangent line to the meridian curve ze(r), in every point r, and the Or axis,
αe(r) = − arctan z′e(r), is increasing. In particular, it follows that αe(Rge) > αe(re). Since
αe(Rge) = αc and αe(re) =

π
2 − αg we obtain inequality π

2 − αg < αc > 0 (see Figure 10).
Therefore if the inner and outer free surface of a meniscus is concave then

π

2
− αg < αc.

Using the Young-Laplace capillarity Eqs. (4) and (5) and conditions (11) and (12)
respectively in [20] the following result was established:

If pi and pe there exists a solution zi(r) of Eq. (4) and a solution ze(r) of Eq. (5)
respectively, which are concave meridian curves and describes the inner and outer free
surfaces of a static meniscus respectively, then the following inequalities hold:

γ
(ac + ag)

ri − Rgi

π

2
cos αc −

Y
Rgi

sin αc

≤ pi ≤ γ
(ac + ag)

ri − Rgi

π

2
sin αg + (ri − Rgi)ρg tan(αc)−

Y
ri

cos αg, (59)

γ
(ac + ag)

Rge − re

π

2
cos αc +

Y
Rge

cos αg

≤ pe ≤ γ
(ac + ag)

Rge − re

π

2
sin αg + (Rge − re)ρg tan(αc) +

Y
Rge

sin αc. (60)

Therefore in case of the existence of a computed static meniscus for which the inner
and outer surfaces are concave then the values of the pressure differences pi = −pgi − ρ ×



TK Techforum Journal (ThyssenKrupp Techforum) 15

g × H and pe = −pge − ρ × g × H has to be in the interval
[

Lle f t
i , Lright

i

]
and

[
Lle f t

e , Lright
e

]
respectively where:

Lle f t
i =γ

(ac + ag)

ri − Rgi

π

2
cos αc −

Y
Rgi

sin αc, (61)

Lright
i =γ

(ac + ag)

ri − Rgi

π

2
sin αg + (ri − Rgi)ρg tan(αc)−

Y
ri

cos αg, (62)

Lle f t
e =γ

(ac + ag)

Rge − re

π

2
cos αc +

Y
Rge

cos αg, (63)

Lright
e =γ

(ac + ag)

Rge − re

π

2
sin αg + (Rge − re)ρg tan(αc) +

Y
Rge

sin αc. (64)

For the practical existence of a static meniscus having the inner and outer free surfaces
concave numerical computations were performed for InSb thin tube growth using the
following numerical data: Rgi = 4.2 × 10−3 [m], ri = 4.35 × 10−3 [m], Rge = 4.8 ×
10−3 [m], re = 4.65 × 10−3 [m] αc = 1.1128955 [rad], αg = 0.541444 [rad], ρ = 6.582 ×
103 [

kg
m3 ], γ = 4.2 × 10−1 [N

m ], g = 9.81 [m
s2 ]

Computation shows that for the considered numerical data, the inequality (59) be-
comes:

13.763836 [Pa] ≤ pi ≤ 52.082108 [Pa], (65)

Lle f t
i = 13.763836 [Pa], and Lright

i = 52.082108 [Pa], (66)

and inequality (60) becomes

178.449362 [Pa] ≤ pe ≤ 221.431533 [Pa], (67)

Lle f t
e = 178.449362 [Pa], and Lright

e = 221.431533 [Pa]. (68)

In the following we will illustrate first the existence of concave inner and outer free
surfaces in case of a static InSb meniscus.

The meridian curve of the outer free surface of concave meniscus can be obtained by
solving the following initial value problem

dzi
dr

= tan αi,
dαi
dr

=
ρgzi − pi

γ

1
cos αi

− 1
r

tan αi, zi(0.0042) = 0, αi(0.0042) = 1.112955,

(69)
for different values of pi ∈ [13.763836, 52.082108] [Pa].

The meridian curve of the outer free surface of concave meniscus can be obtained by
solving the following initial value problem

dze

dr
= − tan αe,

dαe

dr
=

pe − ρgze

γ

1
cos αe

− 1
r

tan αe, ze(0.0048) = 0, αe(0.0048) = 1.112955,

(70)
for different values of pe ∈ [178.449362, 221.431533] [Pa].

In this way by computation the inner and outer surfaces meridian curves of a convex
static Si meniscus is obtained for pi = 35 [Pa] and pe = [Pa] respectively. The meridian
curves zi(r) and ze(r) with the variation of the angles αi, αe are represented on the next
Figures 15-18:
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Figure 15. Concave inner meridian zi(r)

Figure 16. Corresponding αi(r)

Figure 17. Concave outer meridian ze(r)

Figure 18. Corresponding αe(r)
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The static stability of the inner and outer free surfaces of an existing convex static
meniscus it should be distinguished from the dynamic stability of the crystallization process
considered in [17]–[21].

For statically stable convex meniscus, indispensable (necessary) first order conditions
and also second order sufficient conditions for the minimum of functional (6) and (7) should
be satisfied.

The first order necessary conditions are the Euler equations which leads to the Young-
Laplace capillary Eqs. (4) and (5).

The second order sufficient conditions for the minimum of functional (6) and (7) are
the Legendre condition and the Jacobi condition [22].

The Legendre condition for the inner and outer surfaces are:

∂2Fi

∂z′2i
> 0 and

∂2Fe

∂z′2e
> 0, (71)

respectively.

Computing
∂2Fi

∂z′2i
and

∂2Fe

∂z′2e
we find

∂2Fi

∂z′2i
=

rXY
(1 + (z′i)

2)3/2 > 0 and
∂2Fe

∂z′2e
=

rXY
(1 + (z′e)2)3/2 > 0,

respectively.
Therefore, the Legendre conditions are verified for the inner and outer free surfaces.
The Jacoby condition concern the so-called Jacoby equation:[

∂2F
∂z′2

− d
dr

(
∂2F
∂z′2

)]
× η − d

dr

[
∂2F
∂z′2

× η′
]
= 0. (72)

In case of the functional (6) and (7), Eq. (72) becomes:

d
dr

[
rXY

(1 + (z′i)
2)3/2 η′

i

]
− g × ρ × r × ηi = 0, (73)

d
dr

[
rXY

(1 + (z′e)2)3/2 η′
e

]
− g × ρ × r × ηe = 0, (74)

respectively.
Jacobi requirement of stability condition is that the solution of Eqs. (73) and (74) which

verifies the initial condition ηi(Rgi) = 0 and η′
i (Rgi) = 1 vanishes at most ones on the

interval [Rgi, ri] and ηe(re) = 0, η′
e(re) = 1 vanishes at most ones on the interval [re, Rge]

respectively.
According to [22] for that it is sufficient to find Sturm type upper bounds for Eqs. (73)

and (74).
Remark that for the coefficients of (73) and (74) the following inequalities hold:

rXY
(1 + (z′i)

2)3/2 > Rgi × X × (sin αg)
3, and − g × ρ × r < −g × ρ × Rgi, (75)

rXY
(1 + (z′e)2)3/2 > re × X × (cos αc)

3, and − g × ρ × r < −g × ρ × re, (76)

respectively.
Hence,(

θ′i × Rgi × X × (sin αg)
3
)′

− g × ρ × X × Rgi = 0, or θ′′i =
g × ρ

γX(sin αg)3 , (77)
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is a Sturm–type upper bound for (73), and(
θ′e × re × X × (cos αc)

3
)′

− g × ρ × X × re = 0, or θ′′e =
g × ρ

γX(cos αc)3 , (78)

is a Sturm–type upper bound for (74). An arbitrary solution of (77) is given by

θi(r) = Ai × sin(ωi × r + φi), (79)

where Ai and φi are real constants and

ω2
i =

g × ρ

γX(sin αg)3 , (80)

and an arbitrary solution of (78) is given by

θe(r) = Ae × sin(ωe × r + φe), (81)

where Ae and φe are real constants and

ω2
e =

g × ρ

γX(cos αc)3 . (82)

The half period of a non-zero solution θi(r), defined by (79), is given by

π

ωi
= π ×

√
γX(sin αg)3

g × ρ
. (83)

If the half period given by (83) verifies inequality

ri − Rgi < π ×

√
γX(sin αg)3

g × ρ
, (84)

then the function θi(r) defined by (79) vanishes at most ones on the interval [Rgi, ri].
Hence, according to [10] the solution of Jacobi equation (73) which verifies ηi(Rgi) = 0

and η′
i (Rgi) = 1 has at most one zero on the interval [Rgi, ri]. Therefore, the stability

condition of Jacobi is verified for the inner free surface.
The half period of a non-zero solution θe(r), defined by (81), is given by

π

ωe
= π ×

√
γX(cos αc)3

g × ρ
. (85)

If the half period given by (85) verifies inequality

Rge − re < π ×

√
γX(cos αc)3

g × ρ
, (86)

then the function θe(r) defined by (81) vanishes at most ones on the interval [re, Rge].
Hence, according to [10] the solution of Jacobi Eq. (74) which verifies ηe(re) = 0 and

η′
e(re) = 1 has at most one zero on the interval [re, Rge]. Therefore, the stability condition of

Jacobi is verified for the outer free surface.
In case of concave tube, the static stability of the inner and outer free surfaces is:

ri − Rgi < π ×

√
γX(sin αg)3

g × ρ
, and Rge − re < π ×

√
γX(cos αc)3

g × ρ
. (87)

Inequalities (87) represent a sufficient condition of stability for a static convex meniscus
which exist theoretically for a certain value of the pressure differences pi, pe. Note that
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inequalities (87) is not a necessary condition of stability i.e. violation of one or both
inequalities not imply instability.

For find sufficient condition concerning instability the Jacobi requirement of instability
condition has to be proven. This condition for the inner surface is: solution of (73) which
verifies the initial condition ηi(Rgi) = 0 and η′

i (Rgi) = 1 vanishes at least twice on the
interval [Rgi, ri]. For the outer surface is: solution of (74) which verifies the initial condition
ηe(re) = 0, η′

e(re) = 1 vanishes at least twice on the interval [re, Rge].
According to [22] for that it is sufficient to find Sturm type lower bounds for Eqs. (73)

and (74).
Remark that for the coefficients of (73) and (74) the following inequalities hold:

rXY
(1 + (z′i)

2)3/2 < ri × X × (cos αc)
3, and − g × ρ × r > −g × ρ × ri, (88)

rXY
(1 + (z′e)2)3/2 < Rge × X × (sin αg)

3, and − g × ρ × r < −g × ρ × Rge, (89)

respectively.
Hence(

θ′i × ri × X × (cos αc)
3
)′

− g × ρ × X × ri = 0, or θ′′i =
g × ρ

γX(cos αc)3 , (90)

is a Sturm–type lower bound for (73), and(
θ′e × Rge × X × (sin αg)

3
)′

− g × ρ × X × Rge = 0, or θ′′e =
g × ρ

γX(sin αg)3 , (91)

is a Sturm–type lower bound for (74). An arbitrary solution of (90) is given by

θi(r) = Ai × sin(ωi × r + φi), (92)

where Ai and φi are real constants and

ω2
i =

g × ρ

γX(cos αc)3 , (93)

and an arbitrary solution of (91) is given by

θe(r) = Ae × sin(ωe × r + φe), (94)

where Ae and φe are real constants and

ω2
e =

g × ρ

γX(sin αg)3 . (95)

The period of a non-zero solution θi(r), defined by (79), is given by

2π

ωi
= 2 × π ×

√
γX(cos αc)3

g × ρ
. (96)

If the half period given by (96) verifies inequality

2π

ωi
= 2 × π ×

√
γX(cos αc)3

g × ρ
< ri − Rgi, (97)

then the function θi(r) defined by (92) vanishes at least twice on the interval [Rgi, ri]
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Hence, according to [10] the solution of Jacobi equation (73) which verifies ηi(Rgi) = 0
and η′

i (Rgi) = 1 has at least two zeros on the interval [Rgi, ri]. Therefore, the instability
condition of Jacobi is verified for the inner free surface.

The period of a non-zero solution θe(r), defined by (94), is given by

2π

ωe
= 2 × π ×

√
γX(sin αg)3

g × ρ
. (98)

If the period given by (98) verifies inequality

2π

ωe
= 2 × π ×

√
γX(sin αg)3

g × ρ
< Rge − re, (99)

then the function θe(r) defined by (94) vanishes at least twice on the interval [re, Rge]
Hence, according to [10] the solution of Jacobi equation (74) which verifies ηe(re) = 0

and η′
e(re) = 1 has at least two zeros on the interval [re, Rge]. Therefore, the instability

condition of Jacobi is verified for the outer free surface.
In case of concave meniscus, the static instability conditions of the inner and outer free

surfaces are:

2 × π ×

√
γX(cos αc)3

g × ρ
< ri − Rgi and 2 × π ×

√
γX(sin αg)3

g × ρ
< Rge − re. (100)

Inequalities (100) represent a sufficient condition of instability for a static convex
meniscus which exist theoretically for a certain value of the pressure differences pi, pe.
Note that inequalities (100) are not a necessary condition of instability i.e. violation of one
or both inequalities not imply stability.

For the considered InSb tube the sufficient conditions of stability of the inner and outer
surfaces are:

0.00015 = ri − Rgi < π ×

√
γX(sin αg)3

g × ρ
= 0.002964425109, (101)

0.00015 = Rge − re < π ×

√
γX(cos αc)3

g × ρ
= 0.002354579340. (102)

Since inequalities (101) and (102), are valid the inner and outer surfaces of the static
convex InSb meniscus are stables.

The sufficient condition of instability of the inner and outer surfaces are:

0.00015 = ri − Rgi > 2 × π ×

√
γX(cos αc)3

g × ρ
= 0.00470958679, (103)

0.00015 = Rge − re > 2 × π ×

√
γX(sin αg)3

g × ρ
= 0.005928850218. (104)

Since inequalities (103) and (104), are false for the inner and outer surfaces of the static
convex InSb meniscus the instability criteria (100) cannot be applied.

5. Results

Necessary conditions for the existence and sufficient conditions for the stability or
instability of the static meniscus (liquid bridge) appearing in the thin tube single crystal
growth from the melt, of predetermined sizes, by using the edge-defined-film- fed (EFG)
growth method, are presented. Theoretical results are illustrated numerically in case of Si
and InSb tube case single crystal growth by EFG method.
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6. Comments and Conclusions

The main novelty in this article consists in the obtained inequalities. These represent
limits for what can and cannot be achieved. Experimentally, only stable static liquid bridges
can be created if they exist theoretically. Unstable static liquid bridges could exist just in
theory; in reality, they collapse; therefore, they are not appropriate for crystal growth.

Authors Contribution

The authors contributed equally to the realization of this work. All authors have read
and agreed to the published version of the manuscript. Founding. This research did not
receive any specific grant from founding agencies in the public, commercial or not-for-profit
sectors.

Data Availability Statement

The original contributions presented in the study are included in the article; further
inquiries can be directed to the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest.

References
[1] Erris, L., Stormont, R. W., Surek, T., & Taylor, A. S. (1980). The growth of silicon tubes by the EFG process. Journal of Crystal Growth, 50,

200–211.
[2] Swartz, J. C., Surek, T., & Chalmers, B. (1975). The EFG process applied to the growth of silicon ribbons. Journal of Electronic Materials,

4(2), 255–279.
[3] Surek, T., Chalmers, B., & Mlavsky, A. I. (1977). The edge-defined film-fed growth of controlled shape crystals. Journal of Crystal Growth,

42, 453–465.
[4] Kalejs, J. P., Menna, A. A., Stormont, R. W., & Hutchinson, J. W. (1990). Stress in thin hollow silicon cylinders grown by the edge-defined

film-fed growth technique. Journal of Crystal Growth, 104(1), 14–19.
[5] Rajendran, S., Chao, C. C., Hill, D. P., Kalejs, J. P., & Overbye, V. (1991). Magnetic and thermal field model of EFG system. Journal of

Crystal Growth, 109(1-4), 82–87.
[6] Rajendran, S., Larrousse, M., Bathey, B. R., & Kalejs, J. P. (1993). Silicon carbide control in the EFG system. Journal of Crystal Growth,

128(1-4), 338–342.
[7] Rajendran, S., Holmes, K., & Menna, A. (1994). Three-dimensional magnetic induction model of an octagonal edge-defined film-fed

growth system. Journal of Crystal Growth, 137(1-2), 77–81.
[8] Roy, A., MacKintosh, B., Kalejs, J. P., Chen, Q.-S., Zhang, H., & Prasad, V. (2000). Numerical model for inductively heated cylindrical

silicon tube growth system. Journal of Crystal Growth, 211(1), 365–371.
[9] Roy, A., Zhang, H., Prasad, V., MacKintosh, B., Ouellette, M., & Kalejs, J. P. (2001). Growth of large diameter silicon tube by EFG

technique: modeling and experiment. Journal of Crystal Growth, 230(1-2), 224–231.
[10] Sun, D., Wang, C., Zhang, H., MacKintosh, B., Yates, D., & Kalejs, J. (2004). A multi-block method and multigrid technique for large

diameter EFG silicon tube growth. Journal of Crystal Growth, 266(1-3), 167–174.
[11] Behnken, H., Seidl, A., & Franke, D. (2005). A 3D dynamic stress model for the growth of hollow silicon polygons. Journal of Crystal

Growth, 275(1-2), e375–e380.
[12] MacKintosh, B., Seidl, A., Ouellette, M., Bathey, B., Yates, D., & Kalejs, J. (2006). Large silicon crystal hollowtube growth by the

edge-defined film-fed growth EFG method. Journal of Crystal Growth, 287, 428–432.
[13] Kasjanow, H., Nikanorov, A., Nacke, B., Behnken, H., Franke, D., & Seidl, A. (2007). 3D coupled electromagnetic and thermal modelling

of EFG silicon tube growth. Journal of Crystal Growth, 303(1), 175–179.
[14] Tatarchenko, V. A. (1993). Shaped Crystal Growth. Kluwer Academic Publishers, Dordrecht, The Netherlands.
[15] Borodin, A. V., Borodin, V. A., Sidorov, V. V., & Pet’kov, I. S. (1999). Influence of growth process parameters on weight sensor readings

in the Stepanov EFG technique. Journal of Crystal Growth, 198–199(Part 1), 215–219.
[16] Borodin, A. V., Borodin, V. A., & Zhdanov, A. V. (1999). Simulation of the pressure distribution in the melt for sapphire ribbon growth

by the Stepanov EFG technique. Journal of Crystal Growth, 198–199(Part 1), 220–226.
[17] Rossolenko, S. N. (2001). Menisci masses and weights in Stepanov EFG technique: ribbon, rod, tube. Journal of Crystal Growth, 231(1–2),

306–315.
[18] Yang, B., Zheng, L. L., Mackintosh, B., Yates, D., & Kalejs, J. (2006). Meniscus dynamics and melt solidification in the EFG silicon tube

growth process. Journal of Crystal Growth, 293(2), 509–516.
[19] Balint, S., & Tanasie, L. (2008). Nonlinear boundary value problems for second order differential equations describing concave

equilibrium capillary surfaces. Nonlinear Studies, 15(4), 277–296.



TK Techforum Journal (ThyssenKrupp Techforum) 22

[20] Balint, S., & Balint, A. M. (2009). Inequalities for Single Crystal Tube Growth by Edge-Defined Film-Fed Growth Technique. Journal of
Inequalities and Applications, 2009, Article number: 732106.

[21] Balint, S., & Balint, A. M. (2009). On the Creation of a Stable Drop-Like Static Meniscus, Appropriate for the Growth of a Single Crystal
Tube with Prior Specified Inner and Outer Radii. Mathematical Problems in Engineering, 2009, Article ID 348538, 22 pages.

[22] Hartman, P. (1964). Ordinary Differential Equations. John Wiley & Sons, New York, NY, USA.
[23] Cojocaru, A. V., Tanasie, A., Balint, S., & Laitin, S. M. D. (2025). Stability or Instability of a Static Meniscus Appearing in Ribbon Single

Crystal Growth from Melt using E.F.G. Method. J Sen Net Data Comm, 5(2), 01–11.


	Introduction
	The free surfaces equations and the pressure differences
	Existence, Stability or Instability of a meniscus having convex inner and outer free surface
	Existence, Stability or Instability of a meniscus having concave inner and outer free surface
	Results
	Comments and Conclusions
	References

