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Abstract: This study presents necessary conditions for the existence and sufficient conditions for the
stability or instability of the static menisci (liquid bridges) appearing in the single crystal tube growth
from the melt, of predetermined sizes, by using the edge-defined-film-fed (EFG) growth method.
The cases when the contact angle and the growth angle verify the inequality 0 < a; < § — &g or
% > ac > § — ag are treated separately. Experimentally, only static menisci (liquid bridges) which
verifies the necessary condition of existence and the sufficient conditions of stability can be created;
static menisci (liquid bridges) which does not verify both of these conditions, exist only as results of
computation, because in reality (experiment) they collapse. The results of this study is significant for
single crystal tube growth from melt, with prior given macroscopic dimensions, using prior given
specific equipment. That is because the obtained inequalities represent limits for what can and cannot
be achieved experimentally. Numerical illustrations are given for Si tube, and InSb tube.
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1. Introduction

The growth of silicon tubes by the edge-defined film-fed growth (E.EG.) process
was first reported by Erris et al. [1]. In [1] a theory of tube growth by the E.E.G. process
is developed to show the dependence of tube wall thickness on the growth variables.
The theory uses approximations reported in [2,3], and it has been shown to be a useful
tool for understanding the feasible limits of wall-thickness control. A more accurate
predictive model would require an increase of the acceptable tolerance range introduced by
approximation. Later, the heat flow in a tube growth system was analyzed in [4-13]. The
state of the art at the time 1993-1994, concerning the calculation of the meniscus shape in
general in the case of growth by the E.E.G. method, is summarized in [14]. According to
[14], for the general differential equation describing the free surface of a liquid meniscus,
possessing axial symmetry, there is no complete analysis and solution. For the general
equation only numerical integrations were carried out for a number of process parameter
values that were of practical interest at the moment. The authors of [15,16] consider
automated crystal growth processes based on weight sensors and computers. They give an
expression for the weight of the meniscus, contacted with crystal and shaper of arbitrary
shape, in which there are two terms related to the hydrodynamic factor. In [17] it is shown
that the hydrodynamic factor is too small to be considered in automated crystal growth.
In [18] a theoretical and numerical study of meniscus dynamics, under symmetric and
asymmetric configurations, is presented. A meniscus-dynamics model is developed to
consider meniscus shape and its dynamics, heat and mass transfer around the die top and
meniscus. Analysis reveals the correlations among tube thickness, effective melt height,
pull rate, die-top temperature, and crystal environmental temperature. In [19] the effect
of the controllable part of the pressure difference on the free-surface shape of the static
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meniscus is analyzed for the tube growth by the E.F.G. method for materials for which
0<ar<7m/2,0<ag<rm/2anda. > 71/2 —ag, and in [20] a similar analysis is presented
for materials for which 77/2 > ac > 71/2 — ag.

Tube-shaped single crystals are finding applications in medical devices due to their
unique properties. Specifically, they are used in ultrasonic transducers, where their piezo-
electric properties enable high-frequency imaging and therapy. These crystals, often made
of materials like PMN-PT or PIN-PMN-PT, offer superior performance compared to tradi-
tional materials, leading to advancements in medical imaging and diagnostics. Tube-shaped
single crystals, like YAG:Ce single crystals, are used as scintillators in radiation imaging
sensors, producing high-quality images. PMN-PT single crystals, known for their piezo-
electric properties, are used in ultrasonic transducers for both diagnostic and therapeutic
ultrasound applications. These crystals can be fabricated into phased arrays for 3D and 4D
imaging, offering enhanced imaging capabilities.

The imaging and surgical ecosystem considered here spans illumination, access, ther-
apy, and diagnostics. A robust YAG:Ce single crystal light source enables ultra-high-
efficiency illumination for minimally invasive optics (Fig. 1), which integrates with the
endoscope—camera—-video chain and the laparoscope for in-body visualization (Figs. 5
and 6). On the therapeutic side, ultrasonic vessel sealing and dissection support precise
hemostasis in soft-tissue surgery (Fig. 2), while 3D ultrasound approaches are being ex-
plored for treating neurological diseases (Fig. 3). For diagnostic imaging fundamentals,
a representative linear-array scan demonstrates beamforming and resolution trade-offs
(Fig. 4), and two clinical-grade platforms—the Ecograf Acuson Origin and the Ecograf
Acuson Sequoia—illustrate modern system implementations across workflows (Figs. 7 and
8).
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Figure 1. Robust YAG:Ce single crystal for ultra-high efficiency laser lighting

Figure 2. Ultrasoning vessel sealing and dissection
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Figure 3. Treating neurological diseases with 3D ultrasound

Figure 6. Laparoscope
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Figure 7. Ecograf Acuson Origin

Figure 8. Ecograf Acuson Sequoia

This study presents necessary conditions for the existence and sufficient conditions for
the stability or instability of the static menisci (liquid bridges) appearing in the single-crystal
tube growth from the melt, of predetermined sizes, by using the edge-defined film-fed
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(E.EG.) growth method. The results are significant for single-crystal tube growth from melt,
with prior given macroscopic dimensions, using prior given specific equipment.

2. The free surfaces equations and the pressure differences

At the beginning is important to note is that in case of tube the meniscus has two
free surfaces one inner free surface and one outer free surface. The free surfaces of the
static meniscus, in single crystal growth by EFG method, in hydrostatic approximation are
described by the Young-Laplace capillary equation [21]:

v R%]"‘RLZZ) = Pai_Pmir

1 1 _ _
7R715+R723 = DPae — Py,

1)

here, v is the melt surface tension; R%_, % denote the main normal curvatures of the
1 1

meridian arc of the inner free surface and R%e’ R%e denote the main normal curvatures of the
meridian arc of the outer free surface; P,; and P, is the pressure above the inner and the
outer free surface respectively, equal to the pressure of the gas flow introduced in the tube
and in the furnace respectively [21], denoted by py; (Pai = pgi) and pge (Pae = pge)- The
pressures P,,; and Py, under the inner and the outer free surface respectively are equal to
—pg (zi + H) and —pg (z. + H) respectively (the direction of Oz is upwards, see Figures
9 and 10). p denotes the density of the melt and g the gravity acceleration; H denotes
the height difference between the top of the shapers and the melt level in crucible — the
distance between the shapers top level and the crucible melt level. H is positive when the
crucible melt level is under the shapers top level and it is negative when the shapers top
level is under the crucible melt level (see Figures 9 and 10). The meridian curve of the inner
free surface of meniscus is denoted by z;(r) and that of the outer free surface is denoted by
z¢(r) (see Figures 9 and 10).
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Shaper
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Figure 9. Convex axisymmetric free surface
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Figure 10. Concave axisymmetric free surface

In hydrostatic approximation the Young-Laplace capillary surface equations (1) can
be written as:

Y RLM—FRLZz): P& zi Pi, (2)
'YR%E‘l‘Rlze): P8 Ze = Pe,
respectively, where
— _p._ooH
{Pz pei —pgH, @
Pe= —Pge—pgH,

respectively.

To calculate the meniscus surface shape and size in hydrostatic approximation is
convenient to express the Young-Laplace Egs. (2) in differential form with respect to an
axisymmetric reference frame (see Figure 9 and Figure 10) in terms of the meridian curves
z;(r) and z,(r) respectively. According to [20,21] these equations in terms of the inner and
outer meridian curves are:

i — i 3 1
z = W [1+E2)? = [1+@EAz, for 0<Rg<r<r, @&
where r; > 0 is the single crystal tube inner radius and Rg; (Rg; > 1;) is the shaper inner
radius,
_ 501
z) = w 1+ (zé)z] 2 _ - 1+ (zé)z} z,, for 0<r,<r <Ry, (5)

where 7, > 0 is the single crystal tube outer radius and Rg, (7. < Rg) is the shaper outer
radius. It is assumed that the above radii verify: Rgi <1j <te < Rge.

Remark that the Young-Laplace capillary Egs. (4), (5) are the Euler equations of the
free energy of the inner and outer melt columns respectively, i.e. they are the first order
necessary conditions of minimum of functional I;(z) and I,(z) defined by:

i 1
li(zi) = /R {’r\/ 1+ (z))? + 5082 — Pizi}r dr,  zi(ri) = hi, zi(Rgi) =0,  (6)

81
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Ree 1
L(ze) = / § {7\/1 +(z0)2 + Epgzg — pezg}rdr, ze(re) = he, Ze(Rge) =0, (7)
Te

respectively. This means that the Young-Laplace Eqgs. (4), (5) can be obtained starting from
the general Euler equations:

d (oF; oF, d (oF, oF,
dr<82§> dz; 0 dr(Bzé) 0ze 0 ®)
which are the first order necessary conditions of minimum of the functionals, I;(z;), L.(z.),
and taking
1
Fi(T,Z,',Zg) = {’7 1+ (Z§)2+2szzzpizi}rr (9)

1
Fo(r,2e,2¢) = {'Y\/ 1+ (z)% + P8 z; — Peze}7’~ (10)

As the Young-Laplace equations in hydrostatic approximation (4) and (5) are second
order ordinary differential equations, formulation of boundary conditions requires assign-
ment of two boundary conditions; one of the melt crystal interface, the second one on the
melt and shaper interface. These conditions are:

s
zi(Rgi) = tan(ac),  zi(r;) = ’fan(z - ag)/ zi(Rgi) =0,  zi(r;))=h;, (11)
where &, is the growth angle, & is the contact angle between the meniscus free surface and
the edge of the inner shaper top and #; is the height of the meniscus inner surface; and

zp(Rge) = — tan(ac), zh(re) = —tan(% - txg), ze(Rge) =0, Ze(re) = he, (12)

where i, is the height of the meniscus outer surface.

3. Existence, Stability or Instability of a meniscus having convex inner and outer free
surface

The inner and outer free surface of a meniscus is convex if z// () > 0 and z; () > 0 for
Rei <r<rjandr. < R, respectively.

Remark first that in case of a meniscus having convex inner and outer surfaces the
functions z/(r), z,(r) are increasing. For the inner meridian curve this means that the
angle between the tangent line to the inner curve z;(r), in every point r, and the Or axis,
a;(r) = arctanzj(r), is increasing. In particular, it follows that a;(Rg;) < a;(r;). Since
;i(Rg;) = aj and a;(r;) = 7 — ag, we obtain inequality 7 — ag > a;, or ag > ac > 0. (see
Figure 9).

For the outer surface meridian curve convexity means that the angle between the
tangent line to the meridian curve z.(r), in every point r, and the Or axis, a.(r) =
— arctan z(r), is decreasing. In particular, it follows that a,(Rge) < a,(re). Since ae(Rge) =
a, and a,(r,) = % — g, We obtain inequality % — &g > &, Or ag > ac > 0 (see Figure 9).
Therefore if the inner and outer free surface of a meniscus is convex then % — g > .

Using the Young-Laplace capillarity Eqs. (4) and (5) and conditions (11) and (12)
respectively in [20] the following result was established:

If p; and p. there exists a solution z;(r) of Eq. (4) and a solution z.(r) of Eq. (5)
respectively, which are convex meridian curves and describes the inner and outer free
surfaces of a static meniscus respectively, then the following inequalities hold:

— EMCOSDC — ——sina
'7X Ry, c Ry, c
g +a Y
<pi < _7;(71?—1{;) sinag + (r; — Rgj) X p X g X Xtan(g —ocg) = isinocc, (13)



TK Techforum Journal (ThyssenKrupp Techforum) 8

e tae) oY s

X Re e Rg e
m(ag +ac) . T Y

’YX Ree — 7o sinag + (Rge —7¢) X p X g X X tan 5~ %) =y cosag

(14)

<pe <

Therefore in case of the existence of a computed static meniscus for which the inner
and outer surfaces are convex then the values of the pressure differences p; = —pg; — p X

¢ x Hand pe = —pge — p X g X H has to be in the interval [ Lt L ”ght} and [Léeft, Lfght}

respectively where:

left _ EM _ X
L7 = X7~ Ry X COS K¢ Ry X cos g, (15)
j ac+a Y
L:zght =X }z(Ri) X sinag + (r; — Rgi) X p X g X tan(g fzxg> - r—isinzxc, (16)
+a Y
Lffft:—'yx ;%xcosac—i—l{—xsinac, (17)
ge —Te ge
right T (ac‘l'ﬂg) . 7T Y
Lo =—9x X Rg—re X sinag 4+ (Rge —7¢) X p X & X tan(E - (Xg> + ., cosg. (18)

For the practical existence of a static meniscus having the inner and outer free sur-
faces convex numerical computations were performed for Si thin tube growth using
the following numerical data: Ry = 4.2 x 107% [m], r; = 4.35 x 1073 [m], Rge = 4.8 X
1073 [m], re = 4.65 x 1073 [m], ac = 0.523 [rad); ag = 0.191986 [rad] p = 2.5 x 10° ["g ,y=
72x1071 8, ¢ =9.81[4].

Computation shows that for the considered numerical data the limits of pressure
differences are:

1" = —3591.47601[Pa] and L]$" — —847.5686305(Pa, (19)

Lift = —3483.843734[Pa] and L = —617.6517706[Pa]. (20)

Therefore inequalities (13) and (14) becomes:

—3591.47601[Pa] < p; < —847.5686305[Pal, (1)

and
—3483.843734[Pa] < p, < —617.6517706[Pa], (22)

respectively.
In the following we will illustrate first the theoretical (computational) existence/
nonexistence of static meniscus in case of Si tube having convex inner and outer surfaces.
The meridian curve of the inner free surface of convex meniscus can be obtained by
solving the following initial value problem

ir‘ — tana ir pgz’y Pi s tana; — 1 % tana;, z;(0.0042) = 0, a;(0.0042) = 0.523,

(23)
for different values of p; € [—3591.47601, 847.5686305] [Pa].
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The meridian curve of the outer free surface of convex meniscus can be obtained by
solving the following initial value problem

d d - 1
g — tana, e _ PeTP8Ze X tan ae, z¢(0.0048) = 0, . (0.0048) = 0.523,

dr 0% Cos &,
(24)

for different values of p, € [—3483.843734, —617.6517706] [Pa].

In this way by computation the inner and outer surfaces meridian curves of a convex
static Si meniscus is obtained for p; = —2370 [Pa] and p, = —1650 [Pa] respectively. The
meridian curves z;(r) and z.(r) with the variation of the angles «;, a, are represented in
Figures 11-14.
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Figure 11. Convex inner meridian z;(r)
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Figure 12. Corresponding «;(r)
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Figure 13. Convex outer meridian z,(r)
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Figure 14. Corresponding . (r)

The static stability of the inner and outer free surfaces of an existing convex static
meniscus it should be distinguished from the dynamic stability of the crystallization process
considered in [17]-[21].

For statically stable convex meniscus, indispensable (necessary) first order conditions
and also second order sufficient conditions for the minimum of functional (6) and (7) should
be satisfied.

The first order necessary conditions are the Euler equations which leads to the Young-
Laplace capillarity Egs. (4) and (5).

The second order sufficient conditions for the minimum of functional (6) and (7) are
the Legendre condition and the Jacobi condition [22].

The Legendre condition for the inner and outer surfaces are:

02F; 0*F,
— >0, d — >0, 25
22~ W p 7 25)
respectively.
. PF PFe ,
Computing az;a,lz; and 3202 we find
2F. 2
o°F rXY -0, and oF rXY >0,

0zoz,  (1+ (2)2)%/2 92,0z, (14 (2)?)%/2

respectively.
Therefore, the Legendre conditions are verified for the inner and outer free surfaces.
The Jacoby condition concern the so-called Jacoby equation:

0*F d [ 0°F d [ oF .
{az'az' G (az'az'ﬂ T [az’az’ 1 } - 26)
In case of the functional (6) and (7).
Eq. (26) become:

d rXY
dr(l_'_(zl')z)mql{]—gxpxrxmzo, (27)
1
and p <y
r
i [T G| oo )
e
respectively.

Jacobi requirement of stability condition is that the solution of Egs. (27) and (28) which
verifies the initial condition 7;(R,;) = 0 and 7;(R,;) = 1 vanishes at most ones on the
interval [Ry;, 7;] and 7, (re) = 0, 17,(re) = 1 vanishes at most ones on the interval [r,, Rg]|
respectively.
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According to [22] for that it is sufficient to find Sturm type upper bounds for Egs. (27)
and (28).
Remark that for the coefficients of (27) and (28) the following inequalities hold:

rXY

W>RgixXx(sinag)3, and —gxpXr<—gxpXRg (29
1

and
rXY
(ENEAREE > Rge x X % (cosac)®, and —gxpxr<—gxpxre,  (30)
respectively.
Hence
: 3 ___8Xp
(07 X Rgi x X x (sinag)®) —gx px X xRy =0 or 6;'—W, 31)
is a Sturm-type upper bound for (27).
X
(0, x 1o x X x (cosae)®) —gxpxXxr,=0, or 0= m, (32)
is a Sturm~type upper bound for (28).
An arbitrary solution of (31) is given by
0;(r) = A; x sin(w; X r+ ¢;), (33)
where A; and g; are real constants and
2 E§Xp
2 — 34
i YX(sinag)3’ (34)
and an arbitrary solution of (32) is given by
(1) = Ae X sin(we X 7+ @¢), (35)
where A, and ¢, are real constants and
wp=—S3ZF (36)

~ yX(cos )3

The half period of a non-zero solution 6;(r), defined by (33), is given by

X(sin ag)?
T [2XINA) (37)
wi &§xXp

If the half period given by (37) verifies inequality

X (sinag)3

ri — Rgi < 711X exp

(38)

then the function 6;(r) defined by (33) vanishes at most ones on the interval [Rg,-, ri]

Hence, according to [10] the solution of Jacobi Eq. (27) which verifies Ui(Rgi) = 0and
11;(Rg;) = 1 has at most one zero on the interval [Rg;, 7;]. Therefore, the stability condition
of Jacobi is verified for the inner free surface.
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The half period of a non-zero solution 6,(r), defined by (35), is given by

L rX(cosac)3

= 7T X . (39)
We &§Xp
If the half period given by (39) verifies inequality
3
Rge — 1o < 7T X yX(cos)? , (40)
§Xp

then the function 6,(r) defined by (35) vanishes at most ones on the interval [r,, Rgg]
Hence, according to [10] the solution of Jacobi Eq. (28) which verifies #.(r,) = 0 and
11;(re) = 1 has at most one zero on the interval [r,, Rg.|. Therefore, the stability condition of
Jacobi is verified for the outer free surface.
In case of convex tube, the static stability of the inner and outer free surfaces is:

- 3 3
r— Ry < 7% yXsinag)® g Rge — e < 71 X yX(cosac)’
&§Xp &Xp

Inequalities (41) represent a sufficient condition of stability for a static convex meniscus
which exist theoretically for a certain value of the pressure differences p;, p.. Note that
inequalities (41) is not a necessary condition of stability i.e. violation of one or both
inequalities not imply instability.

For find sufficient condition concerning instability the Jacobi requirement of instability
condition has to be proven. This condition for the inner surface is: solution of Eq. (27)
which verifies the initial condition 77;(R¢;) = 0 and 77;(Rg;) = 1 vanishes at least twice on
the interval [Rgi, r;]. For the outer surface is: solution of Eq. (28) which verifies the initial
condition #,(re) = 0, #7,(r.) = 1 vanishes at least twice on the interval [r,, Rge].

According to [22] for that it is sufficient to find Sturm type lower bounds for Eqgs. (27)
and (28).

Remark that for the coefficients of (27) and (28) the following inequalities hold:

rXY

W<Rgix}(x(cosac)3, and —gXpXr>-—-g¢gXpxr;, (42)
1

and
rXY .
W<Rgex)(x(smtxg)3, and —gXpX1’<—gXpXRge, (43)
e
respectively.
Hence
X
(0! xr; x X x (cosac)?) —gxpxXxr;=0, or 6= m, (44)
is a Sturm-type lower bound for (27), and
. X
(6, X Rge x X X (sinag)?) —gx px X x Rge =0, or 6= #ﬂi(g)?” (45)
is a Sturm-type lower bound for (28).
An arbitrary solution of (44) is given by
0i(r) = A; x sin(w; x r+ @;), (46)

where A; and ¢; are real constants and
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2 gxp (47)

“i = yX(cosag)3’

and an arbitrary solution of (45) is given by
(1) = Ae X sin(we X 7+ @¢), (48)
where A, and ¢, are real constants and

2 &Xp
Ve = YX(sinag)3” 49)

The period of a non-zero solution 6;(r), defined by (33), is given by

27 rX(cosac)3

— =2X7mX (50)
w; §Xp
If the half period given by (50) verifies inequality
3
L Y Lo UL (51)
w; &EXp

then the function 6;(r) defined by (46) vanishes at least twice on the interval [Ry;, 7;].
Hence, according to [10] the solution of Jacobi Eq. (27) which verifies #;( Rgi) =0and
11;(Rg;i) = 1has at least two zero on the interval [Rg;, r;]. Therefore, the instability condition
of Jacobi is verified for the inner free surface.
The period of a non-zero solution 6, (r), defined by (48), is given by,

X (si 3
2T g x| PRGN =2)
wWe gxp
If the period given by (52) verifies inequality
2 X (si 3
jIZXT[X M<Rge_7’el (53)
We X p

then the function 6,(r) defined by (48) vanishes at least twice on the interval [re, Rg]
Hence, according to [10] the solution of Jacobi Eq. (28) which verifies #.(r,) = 0 and
17h(re) = 1has at least two zero on the interval [r,, Rgg]. Therefore, the instability condition
of Jacobi is verified for the outer free surface.
In case of convex meniscus, the static instability conditions of the inner and outer free
surfaces are:

rX(cosac)3
gxp

YX(sinag)3
gxp

2 X 7T X <ri—Rg, and 2xmX < Rge — 7e. (54)

Inequalities (54) represent a sufficient condition of instability for a static convex menis-
cus which exist theoretically for a certain value of the pressure differences p;, p.. Note that
inequalities (54) are not a necessary conditions of instability i.e. violation of one or both
inequalities not imply stability.

For the considered Si tube the sufficient conditions of stability of the inner and outer
surfaces are:

YX (sinag)3

0.00015 = r; — Rg; < 71 X
g§xp

= 0.001418760703, (55)
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rX(cosac)3
g§xp
Since inequalities (55) and (56), are valid the inner and outer surfaces of the static

convex Si meniscus are stables.
The sufficient condition of instability of the inner and outer surfaces are:

0.00015 = Rge — 1 < 7T X = 0.01372564021. (56)

X 3

0.00015 = r; — Rgi > 2 X 71 X “Y;C‘;S;‘C) = 0.02745128041, (57)
YX(sinag)3

000015 = Rge — 1o > 2 x 70 4| = —= = = 0.002837521406. (58)

Since inequalities (57) and (58), are false for the inner and outer surfaces of the static
convex Si meniscus the instability criteria (54) cannot be applied.

4. Existence, Stability or Instability of a meniscus having concave inner and outer free
surface

The inner and outer free surface of a meniscus is concave if z/'(r) < 0 and z}/(r) < 0
for Rei <r<rjandre <7 < Rge respectively.

Remark first that in case of a meniscus having concave inner and outer surfaces the
functions z/(r), z,(r) are decreasing. For the inner meridian curve this means that the
angle between the tangent line to the meridian curve z;(r), in every point r, and the Or
axis, a;(r) = arctanzj(r), is decreasing. In particular, it follows that a;(R¢;) > a;(r;). Since
2j(Rgi) = ac and a;(r;) = 7 — ag, we obtain inequality 7 —ag < ac, or ag < ac > 0.
(see Figure 10). For the outer surface meridian curve convexity means that the angle
between the tangent line to the meridian curve z,(r), in every point 7, and the Or axis,
we(r) = —arctan z,(r), is increasing. In particular, it follows that a,(Rg.) > a,(r.). Since
#e(Rge) = ac and a,(r.) = 5 — &g we obtain inequality 7 — ay < ac > 0 (see Figure 10).
Therefore if the inner and outer free surface of a meniscus is concave then

T
5 g <

Using the Young-Laplace capillarity Eqs. (4) and (5) and conditions (11) and (12)
respectively in [20] the following result was established:

If p; and p. there exists a solution z;(r) of Eq. (4) and a solution z.(r) of Eq. (5)

respectively, which are concave meridian curves and describes the inner and outer free
surfaces of a static meniscus respectively, then the following inequalities hold:

(ac +ag)zcosoc - LSIH[X
ri—Rgi 2 © Ry ¢
(ac+aq) T . Y
<p; < 7;—71%;-5 sinag + (r; — Ry;)pg tan(ac) — p cos ig, (59)
(ac+ag) 7 Y
WECOS[XC"' @Cosag
ac+ae) w Y .
<pe < %— sinag + (Rge — 7¢)pg tan(ac) + R sinac. (60)
ge e ge

Therefore in case of the existence of a computed static meniscus for which the inner
and outer surfaces are concave then the values of the pressure differences p; = —pg; — p X
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¢ X Hand p. = —pg. — p X ¢ X H has to be in the interval [Lgeft, Lﬁght] and [Léeft, L;ight}

1
respectively where:

left (ac +ag) m Yy .
Lt e T T -— 61
; 0% 7, — Rgi 5 COS X¢ Rgl- smaug, ( )
. a +g Y
Ly :7%§ sinag + (r; — Ry;)pg tan(ac) — — cos ag, (62)
7‘1 - gl rl
left _ (ac+ag) Y
L' =y———"""+ >
o v Rge 2 coS . + Rge cosug, (63)
. a +ﬂ Y
Lglght :Wgzcig)f sinag + (Rge — re)pg tan(a;) + — sina,. (64)
ge —Te Rge

For the practical existence of a static meniscus having the inner and outer free surfaces
concave numerical computations were performed for InSb thin tube growth using the
following numerical data: Ry = 4.2 X 1073 [m], r; = 435 x107%[m], Re = 4.8 x
1073 [m], ro = 4.65 x 1073 [m] a, = 1.1128955 [rad], a, = 0.541444 [rad], p = 6.582 x
10°[X8], 4y =42 x 1071 [N, g =9.81[13]

Computation shows that for the considered numerical data, the inequality (59) be-
comes:

13.763836 [Pa] < p; < 52.082108 [Pal, (65)
L' — 13763836 [Pa], and LJ%" = 52082108 [Pa), (66)

and inequality (60) becomes

178.449362 [Pa] < p, < 221.431533 [Pal, (67)

L' —178.449362 [Pa), and L)$" = 221431533 [Pa). (68)

In the following we will illustrate first the existence of concave inner and outer free
surfaces in case of a static InSb meniscus.

The meridian curve of the outer free surface of concave meniscus can be obtained by
solving the following initial value problem

dz; dej  pgzi—pi 1 1
o tanw;, 7 5 st 7 tan a;, z;(0.0042) = 0, «,(0.0042) 955,
(69)

for different values of p; € [13.763836,52.082108] [Pa].
The meridian curve of the outer free surface of concave meniscus can be obtained by
solving the following initial value problem

d d - 11
% = —tana,, e PeT P82 ° ~tanag, 2:(0.0048) = 0, 2(0.0048) = 1.112955,

dr ¥ COS K¢
(70)

for different values of p, € [178.449362,221.431533] [Pa].

In this way by computation the inner and outer surfaces meridian curves of a convex
static Si meniscus is obtained for p; = 35 [Pa] and p, = [Pa] respectively. The meridian
curves z;(r) and z.(r) with the variation of the angles «;, a, are represented on the next
Figures 15-18:
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The static stability of the inner and outer free surfaces of an existing convex static
meniscus it should be distinguished from the dynamic stability of the crystallization process
considered in [17]-[21].

For statically stable convex meniscus, indispensable (necessary) first order conditions
and also second order sufficient conditions for the minimum of functional (6) and (7) should
be satisfied.

The first order necessary conditions are the Euler equations which leads to the Young-
Laplace capillary Egs. (4) and (5).

The second order sufficient conditions for the minimum of functional (6) and (7) are
the Legendre condition and the Jacobi condition [22].

The Legendre condition for the inner and outer surfaces are:

0%F; 0*F,
— d — 71
227 >0 an 527 >0, (71)
respectively.
. OF °F, ,
Computing azgzz and 82@26 we find
9%F; rXY 0*F, rXY
N R = N (R EARE

respectively.
Therefore, the Legendre conditions are verified for the inner and outer free surfaces.
The Jacoby condition concern the so-called Jacoby equation:

’F d (9°F d [9*F
(5| - 5| =0 72)
In case of the functional (6) and (7), Eq. (72) becomes:
d rXY , B
mummw’?fl‘g“”x”z—of 7
d rXY p B

respectively.

Jacobi requirement of stability condition is that the solution of Egs. (73) and (74) which
verifies the initial condition 7;(R¢;) = 0 and 77;(R¢;) = 1 vanishes at most ones on the
interval [Rg;, 7;] and 17.(re) = 0, 77,(re) = 1 vanishes at most ones on the interval [re, Rg]
respectively.

According to [22] for that it is sufficient to find Sturm type upper bounds for Egs. (73)
and (74).

Remark that for the coefficients of (73) and (74) the following inequalities hold:

rXY .
W>Rgix){x(smag)3, and —gXxpXr<-—gxpxXRy, (75
1
XY
W>mxXx(cosac)3, and —gXpXr< —gXpXt,, (76)
e
respectively.
Hence,
ina,)?) §xp
(9; X Rgi X X x (sinay) ) —gXPXXXRg=0, or 6= X (sinag)®’ (77)
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is a Sturm-type upper bound for (73), and

/ X
(Héxrngx(coszxc)3) —gXpxXxr,=0, or Oé’zm, (78)

is a Sturm-type upper bound for (74). An arbitrary solution of (77) is given by
0i(r) = A; x sin(w; X 7+ @), (79)
where A; and g; are real constants and

. ol . (80)

' yX(sinag)3’
and an arbitrary solution of (78) is given by

e(r) = Ae X sin(we X 7+ ¢@¢), (81)
where A, and ¢, are real constants and

X
2= 2 F (82)

“e = rX(cosac)3

The half period of a non-zero solution 6;(r), defined by (79), is given by

X(sinag)3
KLY Aliia il (sin g).

= 83
wi g§xXp (&)
If the half period given by (83) verifies inequality
X (si 3
i Ry < x| TR (54
&Xp

then the function 6;(r) defined by (79) vanishes at most ones on the interval [Rg;, ;.
Hence, according to [10] the solution of Jacobi equation (73) which verifies #; (Rgi) =0
and 77/(Rg;) = 1 has at most one zero on the interval [Ry;,7;]. Therefore, the stability
condition of Jacobi is verified for the inner free surface.
The half period of a non-zero solution 6,(r), defined by (81), is given by

L rX(cosac)3

We gXp
If the half period given by (85) verifies inequality
X 3
Rge — 1 < 7T X YOS Re) (cos o) , (86)
§Xp

then the function 6,(r) defined by (81) vanishes at most ones on the interval [r,, Rge].
Hence, according to [10] the solution of Jacobi Eq. (74) which verifies #,(r.) = 0 and
1h(re) = 1 has at most one zero on the interval [r,, Rgg}. Therefore, the stability condition of
Jacobi is verified for the outer free surface.
In case of concave tube, the static stability of the inner and outer free surfaces is:

X(sinag)3 X 3
ri— Ry < 7% yX(sinag)® 4 Rge — Fe < 7T X yX(cos &) 87)
§Xp &Xp
Inequalities (87) represent a sufficient condition of stability for a static convex meniscus
which exist theoretically for a certain value of the pressure differences p;, p.. Note that
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inequalities (87) is not a necessary condition of stability i.e. violation of one or both
inequalities not imply instability.

For find sufficient condition concerning instability the Jacobi requirement of instability
condition has to be proven. This condition for the inner surface is: solution of (73) which
verifies the initial condition 77;(R,;) = 0 and 77;(Rg;) = 1 vanishes at least twice on the
interval [Rgir r;]. For the outer surface is: solution of (74) which verifies the initial condition
He(re) = 0, 1,(re) = 1 vanishes at least twice on the interval [re, Rge].

According to [22] for that it is sufficient to find Sturm type lower bounds for Eqs. (73)
and (74).

Remark that for the coefficients of (73) and (74) the following inequalities hold:

rXY

W<rix}(x(cosac)3, and —gXpXr>-—-g¢gXpxr; (88)
1
rXY .
W<Rgex}(x(smag)3, and —gxpXr<-—gxXpXRg, (89
respectively.
Hence
’ §xp
(Gl{xrixXx(coszxc)?’) —gxpxXxr=0, or GZ{IZW’ (90)
is a Sturm-type lower bound for (73), and
ina)?) gxp
<GéngexXx(s1nzxg) ) —8gXpxXxXRge=0, or HQ'ZW, (91)

is a Sturm-type lower bound for (74). An arbitrary solution of (90) is given by
0;(r) = A; x sin(w; X r+ ¢;), (92)
where A; and ¢; are real constants and

2 gxp (93)

“i = 7YX (cosac)3’

and an arbitrary solution of (91) is given by
(1) = Ae X sin(we X 7+ ¢@¢), (94)
where A, and ¢, are real constants and

2 &Xp
Ve = YX(sinag)3’ %)

The period of a non-zero solution 6;(r), defined by (79), is given by

3
2£:2><7-[>< M (96)
w; §xXp

If the half period given by (96) verifies inequality

3
21 9 % 77 x rX(cosac)

w;j gXp

then the function 6;(r) defined by (92) vanishes at least twice on the interval [Ry;, 7;]

<r;— Rgi/ 97)
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Hence, according to [10] the solution of Jacobi equation (73) which verifies #; (Rgi) =0
and 7;(R,;) = 1 has at least two zeros on the interval [Rg;, 7;]. Therefore, the instability
condition of Jacobi is verified for the inner free surface.

The period of a non-zero solution 6,(r), defined by (94), is given by

X (si 3
2T g | TR INAS ©8)
We §Xp
If the period given by (98) verifies inequality
X(si 3
2Ty XSS (99)
We §Xp

then the function 6, () defined by (94) vanishes at least twice on the interval [re, Rg]
Hence, according to [10] the solution of Jacobi equation (74) which verifies #.(r,) = 0
and 77;(re) = 1 has at least two zeros on the interval [re, Rge]. Therefore, the instability
condition of Jacobi is verified for the outer free surface.
In case of concave meniscus, the static instability conditions of the inner and outer free
surfaces are:

rX(cosa)?
gxp

YX(sinag)3
g§xp

2 X 7T X <ri—Rg and 2x7x < Rge — .. (100)

Inequalities (100) represent a sufficient condition of instability for a static convex
meniscus which exist theoretically for a certain value of the pressure differences p;, pe.
Note that inequalities (100) are not a necessary condition of instability i.e. violation of one
or both inequalities not imply stability.

For the considered InSb tube the sufficient conditions of stability of the inner and outer
surfaces are:

X(sinag)?
rX(Iag) o 002964425109, (101)

gxp
3
0.00015 = Rge — e < 7T X 4 /'VXE;ZS;“) = 0.002354579340. (102)

Since inequalities (101) and (102), are valid the inner and outer surfaces of the static
convex InSb meniscus are stables.
The sufficient condition of instability of the inner and outer surfaces are:

X 3
0.00015 = r; — Rgj > 2 X 70 X 4 /"Y;C‘;S;‘C) — 0.00470958679, (103)
YX(sinag)3
0.00015 = Rge =1 > 2 X 70 x| == == = = 0.005928850218, (104)

Since inequalities (103) and (104), are false for the inner and outer surfaces of the static
convex InSb meniscus the instability criteria (100) cannot be applied.

0.00015 = r; — Ry; < 77 %

5. Results

Necessary conditions for the existence and sufficient conditions for the stability or
instability of the static meniscus (liquid bridge) appearing in the thin tube single crystal
growth from the melt, of predetermined sizes, by using the edge-defined-film- fed (EFG)
growth method, are presented. Theoretical results are illustrated numerically in case of Si
and InSb tube case single crystal growth by EFG method.
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6. Comments and Conclusions

The main novelty in this article consists in the obtained inequalities. These represent
limits for what can and cannot be achieved. Experimentally, only stable static liquid bridges
can be created if they exist theoretically. Unstable static liquid bridges could exist just in
theory; in reality, they collapse; therefore, they are not appropriate for crystal growth.
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